The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators
Main Author: | |
---|---|
Publication Date: | 2004 |
Other Authors: | , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000005xv2 |
Download full: | https://repositorio.udesc.br/handle/UDESC/10434 |
Summary: | We introduce a class of models composed by lattices of coupled complex-amplitude oscillators which preserve the norm. These models are particularly well adapted to investigate phenomena described by the nonlinear Schrödinger equation. The coupling between oscillators is parameterized by the mass, while their local dynamics is illustrated for two area-preserving maps: one obtained from the exact local solution of the Schrödinger equation, the other obtained from its Crank-Nicholson discretization. In both cases, we determine all periodic orbits and show how to detect artifacts introduced by the discretization. © 2004 Elsevier B.V. All rights reserved. |
id |
UDESC-2_c5d77e232ba791fc9b1bfc707e796b2f |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/10434 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillatorsWe introduce a class of models composed by lattices of coupled complex-amplitude oscillators which preserve the norm. These models are particularly well adapted to investigate phenomena described by the nonlinear Schrödinger equation. The coupling between oscillators is parameterized by the mass, while their local dynamics is illustrated for two area-preserving maps: one obtained from the exact local solution of the Schrödinger equation, the other obtained from its Crank-Nicholson discretization. In both cases, we determine all periodic orbits and show how to detect artifacts introduced by the discretization. © 2004 Elsevier B.V. All rights reserved.2024-12-06T19:29:34Z2004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 537 - 5430378-437110.1016/j.physa.2004.02.068https://repositorio.udesc.br/handle/UDESC/10434ark:/33523/0013000005xv2Physica A: Statistical Mechanics and its Applications3383-4Vessen Jr. M.V.Rech P.C.*Beims M.W.Freire J.A.Da Luz M.G.E.Lind P.G.Gallas J.A.C.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:08:44Zoai:repositorio.udesc.br:UDESC/10434Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:08:44Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
title |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
spellingShingle |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators Vessen Jr. M.V. |
title_short |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
title_full |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
title_fullStr |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
title_full_unstemmed |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
title_sort |
The dynamics of complex-amplitude norm-preserving lattices of coupled oscillators |
author |
Vessen Jr. M.V. |
author_facet |
Vessen Jr. M.V. Rech P.C.* Beims M.W. Freire J.A. Da Luz M.G.E. Lind P.G. Gallas J.A.C. |
author_role |
author |
author2 |
Rech P.C.* Beims M.W. Freire J.A. Da Luz M.G.E. Lind P.G. Gallas J.A.C. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Vessen Jr. M.V. Rech P.C.* Beims M.W. Freire J.A. Da Luz M.G.E. Lind P.G. Gallas J.A.C. |
description |
We introduce a class of models composed by lattices of coupled complex-amplitude oscillators which preserve the norm. These models are particularly well adapted to investigate phenomena described by the nonlinear Schrödinger equation. The coupling between oscillators is parameterized by the mass, while their local dynamics is illustrated for two area-preserving maps: one obtained from the exact local solution of the Schrödinger equation, the other obtained from its Crank-Nicholson discretization. In both cases, we determine all periodic orbits and show how to detect artifacts introduced by the discretization. © 2004 Elsevier B.V. All rights reserved. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 2024-12-06T19:29:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0378-4371 10.1016/j.physa.2004.02.068 https://repositorio.udesc.br/handle/UDESC/10434 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000005xv2 |
identifier_str_mv |
0378-4371 10.1016/j.physa.2004.02.068 ark:/33523/0013000005xv2 |
url |
https://repositorio.udesc.br/handle/UDESC/10434 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica A: Statistical Mechanics and its Applications 338 3-4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 537 - 543 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258091422253056 |