Export Ready — 

Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing

Bibliographic Details
Main Author: Ueda E.K.
Publication Date: 2016
Other Authors: de Sales Guerra Tsuzuki M., Takimoto R.Y., Sato A.K., de Castro Martins T., Miyagi P.E., Ubertino Rosso R.S.*
Format: Conference object
Language: eng
Source: Repositório Institucional da Udesc
Download full: https://repositorio.udesc.br/handle/UDESC/7694
Summary: © 2016The determination of an approximation curve from a given sequence of points is an important task in CAD. This work proposes an algorithm to determine a piecewise Bezier curve that approximates a sequence of points. It is used a multiobjective simulated annealing aiming at minimizing the discrepancy between the given sequence of points and the curve, the curve length and the absolute difference of the curve length and length of the given sequence of points. The discrepancy between the given sequence of points and the curve is determined by the sum of the distance between each point from the sequence and the approximation curve, and the distance from a point to the curve is determined by an enhanced method in which the curve is discretized.
id UDESC-2_b890a9a8f9eecf97bf2996461bf9fdf1
oai_identifier_str oai:repositorio.udesc.br:UDESC/7694
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing© 2016The determination of an approximation curve from a given sequence of points is an important task in CAD. This work proposes an algorithm to determine a piecewise Bezier curve that approximates a sequence of points. It is used a multiobjective simulated annealing aiming at minimizing the discrepancy between the given sequence of points and the curve, the curve length and the absolute difference of the curve length and length of the given sequence of points. The discrepancy between the given sequence of points and the curve is determined by the sum of the distance between each point from the sequence and the approximation curve, and the distance from a point to the curve is determined by an enhanced method in which the curve is discretized.2024-12-06T13:48:38Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectp. 49 - 542405-896310.1016/j.ifacol.2016.12.160https://repositorio.udesc.br/handle/UDESC/7694IFAC-PapersOnLine4931Ueda E.K.de Sales Guerra Tsuzuki M.Takimoto R.Y.Sato A.K.de Castro Martins T.Miyagi P.E.Ubertino Rosso R.S.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:55:04Zoai:repositorio.udesc.br:UDESC/7694Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:55:04Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
title Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
spellingShingle Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
Ueda E.K.
title_short Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
title_full Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
title_fullStr Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
title_full_unstemmed Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
title_sort Piecewise Bézier Curve Fitting by Multiobjective Simulated Annealing
author Ueda E.K.
author_facet Ueda E.K.
de Sales Guerra Tsuzuki M.
Takimoto R.Y.
Sato A.K.
de Castro Martins T.
Miyagi P.E.
Ubertino Rosso R.S.*
author_role author
author2 de Sales Guerra Tsuzuki M.
Takimoto R.Y.
Sato A.K.
de Castro Martins T.
Miyagi P.E.
Ubertino Rosso R.S.*
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ueda E.K.
de Sales Guerra Tsuzuki M.
Takimoto R.Y.
Sato A.K.
de Castro Martins T.
Miyagi P.E.
Ubertino Rosso R.S.*
description © 2016The determination of an approximation curve from a given sequence of points is an important task in CAD. This work proposes an algorithm to determine a piecewise Bezier curve that approximates a sequence of points. It is used a multiobjective simulated annealing aiming at minimizing the discrepancy between the given sequence of points and the curve, the curve length and the absolute difference of the curve length and length of the given sequence of points. The discrepancy between the given sequence of points and the curve is determined by the sum of the distance between each point from the sequence and the approximation curve, and the distance from a point to the curve is determined by an enhanced method in which the curve is discretized.
publishDate 2016
dc.date.none.fl_str_mv 2016
2024-12-06T13:48:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2405-8963
10.1016/j.ifacol.2016.12.160
https://repositorio.udesc.br/handle/UDESC/7694
identifier_str_mv 2405-8963
10.1016/j.ifacol.2016.12.160
url https://repositorio.udesc.br/handle/UDESC/7694
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IFAC-PapersOnLine
49
31
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 49 - 54
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1848168409112510464