Export Ready — 

Multi-state coupled map lattices

Bibliographic Details
Main Author: Martins L.C.*
Publication Date: 2001
Other Authors: Brunnet L.G.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000rn2g
Download full: https://repositorio.udesc.br/handle/UDESC/10513
Summary: We investigate a two-dimensional locally coupled map lattice (CML) with the local dynamics driven by the multi-attractor quartic map. In particular, we explore a region where two local fixed points exist, one being periodic and the other chaotic. Different sets of initial conditions such as random initial values for each site or arrangements favoring equal weights to the different local attractors were used. The system reaches different asymptotic states as the intensity or the topology of the local coupling is varied. Among the asymptotic states, we find either homogeneous collective behavior or mixtures of these with synchronized states. These states are characterized and interpreted throughout this work by the distributions of the values of the maps and by the average roughness over the lattice. © 2001 Elsevier Science B.V.
id UDESC-2_afe66995152c0f0e93ad9a5c46d217fd
oai_identifier_str oai:repositorio.udesc.br:UDESC/10513
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Multi-state coupled map latticesWe investigate a two-dimensional locally coupled map lattice (CML) with the local dynamics driven by the multi-attractor quartic map. In particular, we explore a region where two local fixed points exist, one being periodic and the other chaotic. Different sets of initial conditions such as random initial values for each site or arrangements favoring equal weights to the different local attractors were used. The system reaches different asymptotic states as the intensity or the topology of the local coupling is varied. Among the asymptotic states, we find either homogeneous collective behavior or mixtures of these with synchronized states. These states are characterized and interpreted throughout this work by the distributions of the values of the maps and by the average roughness over the lattice. © 2001 Elsevier Science B.V.2024-12-06T19:54:02Z2001info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 119 - 1300378-437110.1016/S0378-4371(01)00167-4https://repositorio.udesc.br/handle/UDESC/10513ark:/33523/001300000rn2gPhysica A: Statistical Mechanics and its Applications2961-2Martins L.C.*Brunnet L.G.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:09:21Zoai:repositorio.udesc.br:UDESC/10513Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:09:21Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Multi-state coupled map lattices
title Multi-state coupled map lattices
spellingShingle Multi-state coupled map lattices
Martins L.C.*
title_short Multi-state coupled map lattices
title_full Multi-state coupled map lattices
title_fullStr Multi-state coupled map lattices
title_full_unstemmed Multi-state coupled map lattices
title_sort Multi-state coupled map lattices
author Martins L.C.*
author_facet Martins L.C.*
Brunnet L.G.
author_role author
author2 Brunnet L.G.
author2_role author
dc.contributor.author.fl_str_mv Martins L.C.*
Brunnet L.G.
description We investigate a two-dimensional locally coupled map lattice (CML) with the local dynamics driven by the multi-attractor quartic map. In particular, we explore a region where two local fixed points exist, one being periodic and the other chaotic. Different sets of initial conditions such as random initial values for each site or arrangements favoring equal weights to the different local attractors were used. The system reaches different asymptotic states as the intensity or the topology of the local coupling is varied. Among the asymptotic states, we find either homogeneous collective behavior or mixtures of these with synchronized states. These states are characterized and interpreted throughout this work by the distributions of the values of the maps and by the average roughness over the lattice. © 2001 Elsevier Science B.V.
publishDate 2001
dc.date.none.fl_str_mv 2001
2024-12-06T19:54:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0378-4371
10.1016/S0378-4371(01)00167-4
https://repositorio.udesc.br/handle/UDESC/10513
dc.identifier.dark.fl_str_mv ark:/33523/001300000rn2g
identifier_str_mv 0378-4371
10.1016/S0378-4371(01)00167-4
ark:/33523/001300000rn2g
url https://repositorio.udesc.br/handle/UDESC/10513
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physica A: Statistical Mechanics and its Applications
296
1-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 119 - 130
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258165728542720