Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000p5xp |
Download full: | https://repositorio.udesc.br/handle/UDESC/6921 |
Summary: | © 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images. |
id |
UDESC-2_a97299d367df26f61ca5ba53a331a892 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/6921 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye© 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images.2024-12-06T13:14:52Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 389 - 4041982-217010.1590/S1982-21702017000300026https://repositorio.udesc.br/handle/UDESC/6921ark:/33523/001300000p5xpBoletim de Ciencias Geodesicas233Sothe C.De Almeida C.M.Liesenberg, VeraldoSchimalski, Marcos Beneditoengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:52:35Zoai:repositorio.udesc.br:UDESC/6921Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:52:35Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
title |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
spellingShingle |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye Sothe C. |
title_short |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
title_full |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
title_fullStr |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
title_full_unstemmed |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
title_sort |
Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye |
author |
Sothe C. |
author_facet |
Sothe C. De Almeida C.M. Liesenberg, Veraldo Schimalski, Marcos Benedito |
author_role |
author |
author2 |
De Almeida C.M. Liesenberg, Veraldo Schimalski, Marcos Benedito |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sothe C. De Almeida C.M. Liesenberg, Veraldo Schimalski, Marcos Benedito |
description |
© 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2024-12-06T13:14:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1982-2170 10.1590/S1982-21702017000300026 https://repositorio.udesc.br/handle/UDESC/6921 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000p5xp |
identifier_str_mv |
1982-2170 10.1590/S1982-21702017000300026 ark:/33523/001300000p5xp |
url |
https://repositorio.udesc.br/handle/UDESC/6921 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Boletim de Ciencias Geodesicas 23 3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 389 - 404 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258154379804672 |