Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye

Bibliographic Details
Main Author: Sothe C.
Publication Date: 2017
Other Authors: De Almeida C.M., Liesenberg, Veraldo, Schimalski, Marcos Benedito
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000p5xp
Download full: https://repositorio.udesc.br/handle/UDESC/6921
Summary: © 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images.
id UDESC-2_a97299d367df26f61ca5ba53a331a892
oai_identifier_str oai:repositorio.udesc.br:UDESC/6921
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye© 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images.2024-12-06T13:14:52Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 389 - 4041982-217010.1590/S1982-21702017000300026https://repositorio.udesc.br/handle/UDESC/6921ark:/33523/001300000p5xpBoletim de Ciencias Geodesicas233Sothe C.De Almeida C.M.Liesenberg, VeraldoSchimalski, Marcos Beneditoengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:52:35Zoai:repositorio.udesc.br:UDESC/6921Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:52:35Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
title Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
spellingShingle Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
Sothe C.
title_short Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
title_full Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
title_fullStr Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
title_full_unstemmed Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
title_sort Approaches for classifying successional forest stages in são joaquim national park using landsat-8 and rapideye images Abordagens para classificação do estádio sucessional da vegetação do parque nacional de são joaquim empregando imagens landsat-8 e rapideye
author Sothe C.
author_facet Sothe C.
De Almeida C.M.
Liesenberg, Veraldo
Schimalski, Marcos Benedito
author_role author
author2 De Almeida C.M.
Liesenberg, Veraldo
Schimalski, Marcos Benedito
author2_role author
author
author
dc.contributor.author.fl_str_mv Sothe C.
De Almeida C.M.
Liesenberg, Veraldo
Schimalski, Marcos Benedito
description © 2017, Universidade Federal do Parana. All rights reserved.The remote classification of the different vegetation successional stages still represents a challenging task in face of the similar spectral response of such classes. This paper is committed to evaluate the performance of Landsat-8 and RapidEye images in the classification of successional stages within a patch of Mixed Ombrophilous Forest located in São Joaquim National Park, Santa Catarina State, south of Brazil. Three variables dataset extracted from each image were analyzed, namely; (1) one solely consisting of the spectral bands themselves; (2) a second one comprising GLCM-based texture measures derived from the spectral bands; and (3) a third one containing these two datasets and additionally two vegetation indices obtained from the Landsat 8 image and three vegetation indices from the RapidEye image. Each dataset was subject to three classifiers: random forest (RF), support vector machine (SVM), and maximum likelihood estimation (MLE or maxver). All conducted experiments achieved satisfactory results, with Kappa coefficients ranging from 0.66 to 0.88, and both user’s and producer’s accuracies lying over 50%. The best result was attained with the Landsat 8 image using the third dataset and the RF classifier. The analysis of the variables relevance with this classifier showed that the texture measures mean, contrast and dissimilarity were decisive for the successful classification of both images.
publishDate 2017
dc.date.none.fl_str_mv 2017
2024-12-06T13:14:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1982-2170
10.1590/S1982-21702017000300026
https://repositorio.udesc.br/handle/UDESC/6921
dc.identifier.dark.fl_str_mv ark:/33523/001300000p5xp
identifier_str_mv 1982-2170
10.1590/S1982-21702017000300026
ark:/33523/001300000p5xp
url https://repositorio.udesc.br/handle/UDESC/6921
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Boletim de Ciencias Geodesicas
23
3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 389 - 404
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258154379804672