Leptospira seroprevalence in capybaras from a Brazilian Urban Area

Bibliographic Details
Main Author: Tonin A.A.
Publication Date: 2018
Other Authors: da Silva Krawczak F., Noll J.C.G., Tochetto C., Martins J.L.R., Badke M.R.T., Labruna M.B., da Silva A.S.*
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000c4sn
Download full: https://repositorio.udesc.br/handle/UDESC/6534
Summary: © 2018 Universidade Federal do Rio Grande do Sul. All rights reserved.Background: Leptospirosis remains the most widespread zoonotic disease in the world. As a clinical entity it is strongly associated with regional occupational and environmental exposures. While the exact global disease burden remains unknown, recent estimates by the leptospirosis Burden Epidemiology Reference Group (LERG) at the World Health Organization have set the number of human cases of severe leptospirosis to over 500,000 per year. This number almost certainly represents an under-representation due to poor surveillance and difficult diagnosis. Leptospira spp. belong to the order Spirochaetales, family Leptospiraceae, composed by 13 pathogenic Leptospira species with more than 260 serovars. Wildlife species are commonly considered to be important epidemiological carriers, mainly because of their frequent reactivity to Leptospira serovars native to their habitat. Capybara (Hydrochaeris hydrochaeris), a known leptospirosis host, is a widespread species in South America. However, reports regarding the importance of this animal in the epidemiology of leptospirosis are rare. Therefore, the objective of this study was to report the results of leptospirosis serological survey of capybaras from a residential park area in southeastern Brazil. Materials, Methods & Results: A total of 172 capybaras were sampled at Itú Municipality, state of São Paulo, southeastern Brazil, from December 2012 to May 2013. Sera samples were examined for Leptospira antibodies by the microscopic agglutination test (MAT), using live antigens grown in liquid medium (EMJH). A complete panel of 7 serogroups (including 10 reference serovars) was used as antigens: serogroup Sejroe (serovars Hardjo and Wolffi), serogroup Grippotyphosa (serovar Grippotyphosa), serogroup Canicola (serovar Canicola), serogroup Icterohaemorrhagiae (serovars Icterohaemorrhagiae and Copenhageni), serogroup Australis (serovars Australis and Bratislava), serogroup Pomona (serovar Pomona), and serogroup Autumnalis (serovar Butembo). As a results, 46 (26.75%) were serologically positive: 29 (63.05%) for serogroup Sejroe, 7 (15.22%) for serogroup Icterohaemorrhagiae; 9 (19.56%) were seropositive for serogroups Sejroe and Icterohaemorrhagiae; and 1 (2.17%) was positive for serogroups Sejroe and Grippotyphosa. Discussion: L. interrogans sensu stricto is responsible for the most frequent and severe cases of human and animal leptospirosis. Considering the results of our serological survey, it is important to reinforce that in tropical countries, mainly Brazil, India, Thailand, Vietnam, Australia and Barbados, serovars belonging to the Icterohaemorrhagiae serogroup (Icterohaemorrhagiae and Copenhageni) are generally the most prevalent. Therefore, the report of different serogroups in capybaras (as observed in our study) it is an important observation reported. Human leptospirosis is usually due to serovars that are maintained by the animal populations of a region, which spread the bacterium on the environment; thus, it may represent an important additional risk factor for human population. Our study identified a greater serum reactivity to strains that belongs to serogroup Sejroe. In Brazil this serogroup is highly predominant in livestock; thus, our main hypothesis is that some animals were contaminated with Sejroe serovars when they were at their natural habitat and, once in the park, they maintained these serovars through cross transmission. Therefore, based on our results, it was possible to observe a significant prevalence of serovars belonging to serogroup Icterohaemorrhagiae, and there was also a high prevalence of samples positive to serogroup Sejroe. Thus, our serologic survey showed that capybaras living in an urban area could represent a risk factor for leptospirosis for the human population eventually exposed.
id UDESC-2_94aae967afe43592853e27aff9fb4a8f
oai_identifier_str oai:repositorio.udesc.br:UDESC/6534
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Leptospira seroprevalence in capybaras from a Brazilian Urban Area© 2018 Universidade Federal do Rio Grande do Sul. All rights reserved.Background: Leptospirosis remains the most widespread zoonotic disease in the world. As a clinical entity it is strongly associated with regional occupational and environmental exposures. While the exact global disease burden remains unknown, recent estimates by the leptospirosis Burden Epidemiology Reference Group (LERG) at the World Health Organization have set the number of human cases of severe leptospirosis to over 500,000 per year. This number almost certainly represents an under-representation due to poor surveillance and difficult diagnosis. Leptospira spp. belong to the order Spirochaetales, family Leptospiraceae, composed by 13 pathogenic Leptospira species with more than 260 serovars. Wildlife species are commonly considered to be important epidemiological carriers, mainly because of their frequent reactivity to Leptospira serovars native to their habitat. Capybara (Hydrochaeris hydrochaeris), a known leptospirosis host, is a widespread species in South America. However, reports regarding the importance of this animal in the epidemiology of leptospirosis are rare. Therefore, the objective of this study was to report the results of leptospirosis serological survey of capybaras from a residential park area in southeastern Brazil. Materials, Methods & Results: A total of 172 capybaras were sampled at Itú Municipality, state of São Paulo, southeastern Brazil, from December 2012 to May 2013. Sera samples were examined for Leptospira antibodies by the microscopic agglutination test (MAT), using live antigens grown in liquid medium (EMJH). A complete panel of 7 serogroups (including 10 reference serovars) was used as antigens: serogroup Sejroe (serovars Hardjo and Wolffi), serogroup Grippotyphosa (serovar Grippotyphosa), serogroup Canicola (serovar Canicola), serogroup Icterohaemorrhagiae (serovars Icterohaemorrhagiae and Copenhageni), serogroup Australis (serovars Australis and Bratislava), serogroup Pomona (serovar Pomona), and serogroup Autumnalis (serovar Butembo). As a results, 46 (26.75%) were serologically positive: 29 (63.05%) for serogroup Sejroe, 7 (15.22%) for serogroup Icterohaemorrhagiae; 9 (19.56%) were seropositive for serogroups Sejroe and Icterohaemorrhagiae; and 1 (2.17%) was positive for serogroups Sejroe and Grippotyphosa. Discussion: L. interrogans sensu stricto is responsible for the most frequent and severe cases of human and animal leptospirosis. Considering the results of our serological survey, it is important to reinforce that in tropical countries, mainly Brazil, India, Thailand, Vietnam, Australia and Barbados, serovars belonging to the Icterohaemorrhagiae serogroup (Icterohaemorrhagiae and Copenhageni) are generally the most prevalent. Therefore, the report of different serogroups in capybaras (as observed in our study) it is an important observation reported. Human leptospirosis is usually due to serovars that are maintained by the animal populations of a region, which spread the bacterium on the environment; thus, it may represent an important additional risk factor for human population. Our study identified a greater serum reactivity to strains that belongs to serogroup Sejroe. In Brazil this serogroup is highly predominant in livestock; thus, our main hypothesis is that some animals were contaminated with Sejroe serovars when they were at their natural habitat and, once in the park, they maintained these serovars through cross transmission. Therefore, based on our results, it was possible to observe a significant prevalence of serovars belonging to serogroup Icterohaemorrhagiae, and there was also a high prevalence of samples positive to serogroup Sejroe. Thus, our serologic survey showed that capybaras living in an urban area could represent a risk factor for leptospirosis for the human population eventually exposed.2024-12-06T13:05:07Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1679-921610.22456/1679-9216.81100https://repositorio.udesc.br/handle/UDESC/6534ark:/33523/001300000c4snActa Scientiae Veterinariae441Tonin A.A.da Silva Krawczak F.Noll J.C.G.Tochetto C.Martins J.L.R.Badke M.R.T.Labruna M.B.da Silva A.S.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:51:16Zoai:repositorio.udesc.br:UDESC/6534Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:51:16Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Leptospira seroprevalence in capybaras from a Brazilian Urban Area
title Leptospira seroprevalence in capybaras from a Brazilian Urban Area
spellingShingle Leptospira seroprevalence in capybaras from a Brazilian Urban Area
Tonin A.A.
title_short Leptospira seroprevalence in capybaras from a Brazilian Urban Area
title_full Leptospira seroprevalence in capybaras from a Brazilian Urban Area
title_fullStr Leptospira seroprevalence in capybaras from a Brazilian Urban Area
title_full_unstemmed Leptospira seroprevalence in capybaras from a Brazilian Urban Area
title_sort Leptospira seroprevalence in capybaras from a Brazilian Urban Area
author Tonin A.A.
author_facet Tonin A.A.
da Silva Krawczak F.
Noll J.C.G.
Tochetto C.
Martins J.L.R.
Badke M.R.T.
Labruna M.B.
da Silva A.S.*
author_role author
author2 da Silva Krawczak F.
Noll J.C.G.
Tochetto C.
Martins J.L.R.
Badke M.R.T.
Labruna M.B.
da Silva A.S.*
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Tonin A.A.
da Silva Krawczak F.
Noll J.C.G.
Tochetto C.
Martins J.L.R.
Badke M.R.T.
Labruna M.B.
da Silva A.S.*
description © 2018 Universidade Federal do Rio Grande do Sul. All rights reserved.Background: Leptospirosis remains the most widespread zoonotic disease in the world. As a clinical entity it is strongly associated with regional occupational and environmental exposures. While the exact global disease burden remains unknown, recent estimates by the leptospirosis Burden Epidemiology Reference Group (LERG) at the World Health Organization have set the number of human cases of severe leptospirosis to over 500,000 per year. This number almost certainly represents an under-representation due to poor surveillance and difficult diagnosis. Leptospira spp. belong to the order Spirochaetales, family Leptospiraceae, composed by 13 pathogenic Leptospira species with more than 260 serovars. Wildlife species are commonly considered to be important epidemiological carriers, mainly because of their frequent reactivity to Leptospira serovars native to their habitat. Capybara (Hydrochaeris hydrochaeris), a known leptospirosis host, is a widespread species in South America. However, reports regarding the importance of this animal in the epidemiology of leptospirosis are rare. Therefore, the objective of this study was to report the results of leptospirosis serological survey of capybaras from a residential park area in southeastern Brazil. Materials, Methods & Results: A total of 172 capybaras were sampled at Itú Municipality, state of São Paulo, southeastern Brazil, from December 2012 to May 2013. Sera samples were examined for Leptospira antibodies by the microscopic agglutination test (MAT), using live antigens grown in liquid medium (EMJH). A complete panel of 7 serogroups (including 10 reference serovars) was used as antigens: serogroup Sejroe (serovars Hardjo and Wolffi), serogroup Grippotyphosa (serovar Grippotyphosa), serogroup Canicola (serovar Canicola), serogroup Icterohaemorrhagiae (serovars Icterohaemorrhagiae and Copenhageni), serogroup Australis (serovars Australis and Bratislava), serogroup Pomona (serovar Pomona), and serogroup Autumnalis (serovar Butembo). As a results, 46 (26.75%) were serologically positive: 29 (63.05%) for serogroup Sejroe, 7 (15.22%) for serogroup Icterohaemorrhagiae; 9 (19.56%) were seropositive for serogroups Sejroe and Icterohaemorrhagiae; and 1 (2.17%) was positive for serogroups Sejroe and Grippotyphosa. Discussion: L. interrogans sensu stricto is responsible for the most frequent and severe cases of human and animal leptospirosis. Considering the results of our serological survey, it is important to reinforce that in tropical countries, mainly Brazil, India, Thailand, Vietnam, Australia and Barbados, serovars belonging to the Icterohaemorrhagiae serogroup (Icterohaemorrhagiae and Copenhageni) are generally the most prevalent. Therefore, the report of different serogroups in capybaras (as observed in our study) it is an important observation reported. Human leptospirosis is usually due to serovars that are maintained by the animal populations of a region, which spread the bacterium on the environment; thus, it may represent an important additional risk factor for human population. Our study identified a greater serum reactivity to strains that belongs to serogroup Sejroe. In Brazil this serogroup is highly predominant in livestock; thus, our main hypothesis is that some animals were contaminated with Sejroe serovars when they were at their natural habitat and, once in the park, they maintained these serovars through cross transmission. Therefore, based on our results, it was possible to observe a significant prevalence of serovars belonging to serogroup Icterohaemorrhagiae, and there was also a high prevalence of samples positive to serogroup Sejroe. Thus, our serologic survey showed that capybaras living in an urban area could represent a risk factor for leptospirosis for the human population eventually exposed.
publishDate 2018
dc.date.none.fl_str_mv 2018
2024-12-06T13:05:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1679-9216
10.22456/1679-9216.81100
https://repositorio.udesc.br/handle/UDESC/6534
dc.identifier.dark.fl_str_mv ark:/33523/001300000c4sn
identifier_str_mv 1679-9216
10.22456/1679-9216.81100
ark:/33523/001300000c4sn
url https://repositorio.udesc.br/handle/UDESC/6534
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Acta Scientiae Veterinariae
44
1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258114586345472