How to embed shrimps in parameter planes of the Lorenz system
Main Author: | |
---|---|
Publication Date: | 2017 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/00130000049hr |
Download full: | https://repositorio.udesc.br/handle/UDESC/7071 |
Summary: | © 2017 The Royal Swedish Academy of Sciences.Shrimps are typical periodic islands present in chaotic regions of parameter planes of nonlinear dynamical systems. Such periodic structures have been observed in several different fields including mathematical models simulating lasers, electronic circuits, chemical reactions, neural networks, and biological systems. As far as I know the existence of shrimps in parameter planes of the Lorenz system has never been reported. This paper describes how to display such structures embedded in chaotic regions of parameter planes of the Lorenz system. This is accomplished by considering a shift in the x variable of the differential equation. Additionally it is shown that these periodic structures may appear organized in period-adding sequences. |
id |
UDESC-2_76d82f46030d4ab8dc8976040bc0fe64 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/7071 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
How to embed shrimps in parameter planes of the Lorenz system© 2017 The Royal Swedish Academy of Sciences.Shrimps are typical periodic islands present in chaotic regions of parameter planes of nonlinear dynamical systems. Such periodic structures have been observed in several different fields including mathematical models simulating lasers, electronic circuits, chemical reactions, neural networks, and biological systems. As far as I know the existence of shrimps in parameter planes of the Lorenz system has never been reported. This paper describes how to display such structures embedded in chaotic regions of parameter planes of the Lorenz system. This is accomplished by considering a shift in the x variable of the differential equation. Additionally it is shown that these periodic structures may appear organized in period-adding sequences.2024-12-06T13:18:32Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1402-489610.1088/1402-4896/aa5f61https://repositorio.udesc.br/handle/UDESC/7071ark:/33523/00130000049hrPhysica Scripta924Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:53:01Zoai:repositorio.udesc.br:UDESC/7071Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:53:01Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
How to embed shrimps in parameter planes of the Lorenz system |
title |
How to embed shrimps in parameter planes of the Lorenz system |
spellingShingle |
How to embed shrimps in parameter planes of the Lorenz system Rech P.C.* |
title_short |
How to embed shrimps in parameter planes of the Lorenz system |
title_full |
How to embed shrimps in parameter planes of the Lorenz system |
title_fullStr |
How to embed shrimps in parameter planes of the Lorenz system |
title_full_unstemmed |
How to embed shrimps in parameter planes of the Lorenz system |
title_sort |
How to embed shrimps in parameter planes of the Lorenz system |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
© 2017 The Royal Swedish Academy of Sciences.Shrimps are typical periodic islands present in chaotic regions of parameter planes of nonlinear dynamical systems. Such periodic structures have been observed in several different fields including mathematical models simulating lasers, electronic circuits, chemical reactions, neural networks, and biological systems. As far as I know the existence of shrimps in parameter planes of the Lorenz system has never been reported. This paper describes how to display such structures embedded in chaotic regions of parameter planes of the Lorenz system. This is accomplished by considering a shift in the x variable of the differential equation. Additionally it is shown that these periodic structures may appear organized in period-adding sequences. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2024-12-06T13:18:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1402-4896 10.1088/1402-4896/aa5f61 https://repositorio.udesc.br/handle/UDESC/7071 |
dc.identifier.dark.fl_str_mv |
ark:/33523/00130000049hr |
identifier_str_mv |
1402-4896 10.1088/1402-4896/aa5f61 ark:/33523/00130000049hr |
url |
https://repositorio.udesc.br/handle/UDESC/7071 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica Scripta 92 4 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258085258723328 |