Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms

Bibliographic Details
Main Author: Sothe C.
Publication Date: 2018
Other Authors: De Almeida C.M., Schimalski, Marcos Benedito, Liesenberg, Veraldo
Format: Conference object
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000001v9r
Download full: https://repositorio.udesc.br/handle/UDESC/6053
Summary: © 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes.
id UDESC-2_711d32f0aa64d277f96d14d87150cc02
oai_identifier_str oai:repositorio.udesc.br:UDESC/6053
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms© 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes.2024-12-06T12:46:25Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectp. 6207 - 621010.1109/IGARSS.2018.8517941https://repositorio.udesc.br/handle/UDESC/6053ark:/33523/0013000001v9rInternational Geoscience and Remote Sensing Symposium (IGARSS)2018-JulySothe C.De Almeida C.M.Schimalski, Marcos BeneditoLiesenberg, Veraldoengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:49:37Zoai:repositorio.udesc.br:UDESC/6053Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:49:37Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
title Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
spellingShingle Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
Sothe C.
title_short Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
title_full Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
title_fullStr Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
title_full_unstemmed Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
title_sort Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
author Sothe C.
author_facet Sothe C.
De Almeida C.M.
Schimalski, Marcos Benedito
Liesenberg, Veraldo
author_role author
author2 De Almeida C.M.
Schimalski, Marcos Benedito
Liesenberg, Veraldo
author2_role author
author
author
dc.contributor.author.fl_str_mv Sothe C.
De Almeida C.M.
Schimalski, Marcos Benedito
Liesenberg, Veraldo
description © 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes.
publishDate 2018
dc.date.none.fl_str_mv 2018
2024-12-06T12:46:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 10.1109/IGARSS.2018.8517941
https://repositorio.udesc.br/handle/UDESC/6053
dc.identifier.dark.fl_str_mv ark:/33523/0013000001v9r
identifier_str_mv 10.1109/IGARSS.2018.8517941
ark:/33523/0013000001v9r
url https://repositorio.udesc.br/handle/UDESC/6053
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 6207 - 6210
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258075881308160