Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000001v9r |
Download full: | https://repositorio.udesc.br/handle/UDESC/6053 |
Summary: | © 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes. |
id |
UDESC-2_711d32f0aa64d277f96d14d87150cc02 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/6053 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms© 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes.2024-12-06T12:46:25Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectp. 6207 - 621010.1109/IGARSS.2018.8517941https://repositorio.udesc.br/handle/UDESC/6053ark:/33523/0013000001v9rInternational Geoscience and Remote Sensing Symposium (IGARSS)2018-JulySothe C.De Almeida C.M.Schimalski, Marcos BeneditoLiesenberg, Veraldoengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:49:37Zoai:repositorio.udesc.br:UDESC/6053Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:49:37Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
title |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
spellingShingle |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms Sothe C. |
title_short |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
title_full |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
title_fullStr |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
title_full_unstemmed |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
title_sort |
Integration of WorldView-2 and LiDAR data to map a subtropical forest area: Comparison of machine learning algorithms |
author |
Sothe C. |
author_facet |
Sothe C. De Almeida C.M. Schimalski, Marcos Benedito Liesenberg, Veraldo |
author_role |
author |
author2 |
De Almeida C.M. Schimalski, Marcos Benedito Liesenberg, Veraldo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Sothe C. De Almeida C.M. Schimalski, Marcos Benedito Liesenberg, Veraldo |
description |
© 2018 IEEEThis work is committed to explore the integration of airborne LiDAR data and WorldView-2 (WV-2) images to classify land cover and land use in a rural area with the presence of a subtropical forest. Different methods were used for this purpose: two artificial neural networks (ANN) and three decision trees forests. The results demonstrated that the inclusion of LiDAR data significantly improved the classifications in all methods. Excluding the Convolutional Neural Network, the classification algorithms had a nearly similar performance, and none of them achieved the best accuracy for all adopted classes. Forest by Penalizing Attributes (FPA) attained the best general result, with a Kappa index of 0.92, while Rotation Forest obtained the best result in the classification of the two vegetation classes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 2024-12-06T12:46:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
10.1109/IGARSS.2018.8517941 https://repositorio.udesc.br/handle/UDESC/6053 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000001v9r |
identifier_str_mv |
10.1109/IGARSS.2018.8517941 ark:/33523/0013000001v9r |
url |
https://repositorio.udesc.br/handle/UDESC/6053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Geoscience and Remote Sensing Symposium (IGARSS) 2018-July |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 6207 - 6210 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258075881308160 |