Export Ready — 

DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors

Bibliographic Details
Main Author: Limeira M.
Publication Date: 2021
Other Authors: Piardi L., Kalempa V.C.*, Leitao P., De Oliveira A.S.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/00130000067vw
Download full: https://repositorio.udesc.br/handle/UDESC/3621
Summary: © 2001-2012 IEEE.This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environment and point cloud. Virtual LiDAR sensors with different characteristics and positions can then be generated. This method is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.
id UDESC-2_650c28e22e558f216226370f410d8946
oai_identifier_str oai:repositorio.udesc.br:UDESC/3621
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors© 2001-2012 IEEE.This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environment and point cloud. Virtual LiDAR sensors with different characteristics and positions can then be generated. This method is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.2024-12-06T11:29:41Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 19047 - 190571558-174810.1109/JSEN.2021.3088007https://repositorio.udesc.br/handle/UDESC/3621ark:/33523/00130000067vwIEEE Sensors Journal2117Limeira M.Piardi L.Kalempa V.C.*Leitao P.De Oliveira A.S.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:42:14Zoai:repositorio.udesc.br:UDESC/3621Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:42:14Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
title DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
spellingShingle DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
Limeira M.
title_short DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
title_full DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
title_fullStr DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
title_full_unstemmed DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
title_sort DepthLiDAR: Active Segmentation of Environment Depth Map into Mobile Sensors
author Limeira M.
author_facet Limeira M.
Piardi L.
Kalempa V.C.*
Leitao P.
De Oliveira A.S.
author_role author
author2 Piardi L.
Kalempa V.C.*
Leitao P.
De Oliveira A.S.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Limeira M.
Piardi L.
Kalempa V.C.*
Leitao P.
De Oliveira A.S.
description © 2001-2012 IEEE.This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environment and point cloud. Virtual LiDAR sensors with different characteristics and positions can then be generated. This method is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.
publishDate 2021
dc.date.none.fl_str_mv 2021
2024-12-06T11:29:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1558-1748
10.1109/JSEN.2021.3088007
https://repositorio.udesc.br/handle/UDESC/3621
dc.identifier.dark.fl_str_mv ark:/33523/00130000067vw
identifier_str_mv 1558-1748
10.1109/JSEN.2021.3088007
ark:/33523/00130000067vw
url https://repositorio.udesc.br/handle/UDESC/3621
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IEEE Sensors Journal
21
17
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 19047 - 19057
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258092416303104