Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000b3j5 |
Download full: | https://repositorio.udesc.br/handle/UDESC/5212 |
Summary: | © 2019 World Scientific Publishing Company.We report coexisting multiple attractors and birth of chaos via period-bubbling cascades in a model of geomagnetic field reversals. The model system comprises a set of three coupled first-order quadratic nonlinear equations with three control parameters. Up to seven kinds of multistable attractors, viz. fixed point-periodic, fixed point-chaotic, periodic-periodic, periodic-chaotic, chaotic-chaotic, fixed point-periodic-periodic, fixed point-periodic-chaotic are obtained depending on the initial conditions for critical parameter sets. Antimonotonicity is a striking characteristic feature of nonlinear systems through which a full Feigenbaum tree corresponding to creation and annihilation of period-doubling cascades is developed. By analyzing the two-parameters dependent dynamics of the system, a critical biparameter zone is identified, where antimonotonicity comes into existence. The complex dynamical behaviors of the system are explored using phase portraits, bifurcation diagrams, Lyapunov exponents, isoperiodic diagram, and basins of attraction. |
id |
UDESC-2_5bf82363a543ae85eb1b96f2a1e220bc |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/5212 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals© 2019 World Scientific Publishing Company.We report coexisting multiple attractors and birth of chaos via period-bubbling cascades in a model of geomagnetic field reversals. The model system comprises a set of three coupled first-order quadratic nonlinear equations with three control parameters. Up to seven kinds of multistable attractors, viz. fixed point-periodic, fixed point-chaotic, periodic-periodic, periodic-chaotic, chaotic-chaotic, fixed point-periodic-periodic, fixed point-periodic-chaotic are obtained depending on the initial conditions for critical parameter sets. Antimonotonicity is a striking characteristic feature of nonlinear systems through which a full Feigenbaum tree corresponding to creation and annihilation of period-doubling cascades is developed. By analyzing the two-parameters dependent dynamics of the system, a critical biparameter zone is identified, where antimonotonicity comes into existence. The complex dynamical behaviors of the system are explored using phase portraits, bifurcation diagrams, Lyapunov exponents, isoperiodic diagram, and basins of attraction.2024-12-06T12:16:15Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article0218-127410.1142/S0218127419300349https://repositorio.udesc.br/handle/UDESC/5212ark:/33523/001300000b3j5International Journal of Bifurcation and Chaos2912Rech P.C.*Dhua S.Pati N.C.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:46:58Zoai:repositorio.udesc.br:UDESC/5212Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:46:58Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
title |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
spellingShingle |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals Rech P.C.* |
title_short |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
title_full |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
title_fullStr |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
title_full_unstemmed |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
title_sort |
Multistability and Bubbling Route to Chaos in a Deterministic Model for Geomagnetic Field Reversals |
author |
Rech P.C.* |
author_facet |
Rech P.C.* Dhua S. Pati N.C. |
author_role |
author |
author2 |
Dhua S. Pati N.C. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rech P.C.* Dhua S. Pati N.C. |
description |
© 2019 World Scientific Publishing Company.We report coexisting multiple attractors and birth of chaos via period-bubbling cascades in a model of geomagnetic field reversals. The model system comprises a set of three coupled first-order quadratic nonlinear equations with three control parameters. Up to seven kinds of multistable attractors, viz. fixed point-periodic, fixed point-chaotic, periodic-periodic, periodic-chaotic, chaotic-chaotic, fixed point-periodic-periodic, fixed point-periodic-chaotic are obtained depending on the initial conditions for critical parameter sets. Antimonotonicity is a striking characteristic feature of nonlinear systems through which a full Feigenbaum tree corresponding to creation and annihilation of period-doubling cascades is developed. By analyzing the two-parameters dependent dynamics of the system, a critical biparameter zone is identified, where antimonotonicity comes into existence. The complex dynamical behaviors of the system are explored using phase portraits, bifurcation diagrams, Lyapunov exponents, isoperiodic diagram, and basins of attraction. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2024-12-06T12:16:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0218-1274 10.1142/S0218127419300349 https://repositorio.udesc.br/handle/UDESC/5212 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000b3j5 |
identifier_str_mv |
0218-1274 10.1142/S0218127419300349 ark:/33523/001300000b3j5 |
url |
https://repositorio.udesc.br/handle/UDESC/5212 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Bifurcation and Chaos 29 12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258110182326272 |