Exportação concluída — 

Parameter identification of damage models using genetic algorithms

Detalhes bibliográficos
Autor(a) principal: Munoz-Rojas P.A.*
Data de Publicação: 2010
Outros Autores: Cardoso, Eduardo Lenz, Vaz Jr. M.*
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000004d2f
Texto Completo: https://repositorio.udesc.br/handle/UDESC/11119
Resumo: One of the most widely employed models to evaluate ductile damage and fracture is due to Gurson. An inconvenience of the model is that several material parameters must be determined in order to represent adequately a given experimental behavior. Determination of such parameters is not trivial but can be performed by means of inverse analyses using optimization procedures. In this work, the material parameters are sought by fitting force vs. displacement curves computed using finite element simulation to experimental curves obtained from tensile tests. The resulting optimization problem is non-convex and may present several local minima, thereby posing some difficulties to gradient-based optimization procedures due to the strong dependence on initial estimates of the design variables (the material parameters in this case). An approach based on a genetic algorithm is used in an attempt to avoid this problem. This strategy makes also possible to exploit the parallel nature of evolutionary algorithms as, at each generation, the evaluation of the fitness function of one individual is independent of the fitness of the rest of the population. In this particular implementation, each individual is represented by a gray encoding sequence of genes, the parental selection is performed by means of a tournament selection, the crossover probability is 0.8 and the probability of mutation is 0.05. © Society for Experimental Mechanics 2009.
id UDESC-2_596eac1d85361b7682a681e3ba96012d
oai_identifier_str oai:repositorio.udesc.br:UDESC/11119
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Parameter identification of damage models using genetic algorithmsOne of the most widely employed models to evaluate ductile damage and fracture is due to Gurson. An inconvenience of the model is that several material parameters must be determined in order to represent adequately a given experimental behavior. Determination of such parameters is not trivial but can be performed by means of inverse analyses using optimization procedures. In this work, the material parameters are sought by fitting force vs. displacement curves computed using finite element simulation to experimental curves obtained from tensile tests. The resulting optimization problem is non-convex and may present several local minima, thereby posing some difficulties to gradient-based optimization procedures due to the strong dependence on initial estimates of the design variables (the material parameters in this case). An approach based on a genetic algorithm is used in an attempt to avoid this problem. This strategy makes also possible to exploit the parallel nature of evolutionary algorithms as, at each generation, the evaluation of the fitness function of one individual is independent of the fitness of the rest of the population. In this particular implementation, each individual is represented by a gray encoding sequence of genes, the parental selection is performed by means of a tournament selection, the crossover probability is 0.8 and the probability of mutation is 0.05. © Society for Experimental Mechanics 2009.2024-12-07T21:04:20Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectp. 627 - 6341046-6789https://repositorio.udesc.br/handle/UDESC/11119ark:/33523/0013000004d2fProceedings of the Society for Experimental Mechanics, Inc.67Munoz-Rojas P.A.*Cardoso, Eduardo LenzVaz Jr. M.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:04:20Zoai:repositorio.udesc.br:UDESC/11119Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:04:20Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Parameter identification of damage models using genetic algorithms
title Parameter identification of damage models using genetic algorithms
spellingShingle Parameter identification of damage models using genetic algorithms
Munoz-Rojas P.A.*
title_short Parameter identification of damage models using genetic algorithms
title_full Parameter identification of damage models using genetic algorithms
title_fullStr Parameter identification of damage models using genetic algorithms
title_full_unstemmed Parameter identification of damage models using genetic algorithms
title_sort Parameter identification of damage models using genetic algorithms
author Munoz-Rojas P.A.*
author_facet Munoz-Rojas P.A.*
Cardoso, Eduardo Lenz
Vaz Jr. M.*
author_role author
author2 Cardoso, Eduardo Lenz
Vaz Jr. M.*
author2_role author
author
dc.contributor.author.fl_str_mv Munoz-Rojas P.A.*
Cardoso, Eduardo Lenz
Vaz Jr. M.*
description One of the most widely employed models to evaluate ductile damage and fracture is due to Gurson. An inconvenience of the model is that several material parameters must be determined in order to represent adequately a given experimental behavior. Determination of such parameters is not trivial but can be performed by means of inverse analyses using optimization procedures. In this work, the material parameters are sought by fitting force vs. displacement curves computed using finite element simulation to experimental curves obtained from tensile tests. The resulting optimization problem is non-convex and may present several local minima, thereby posing some difficulties to gradient-based optimization procedures due to the strong dependence on initial estimates of the design variables (the material parameters in this case). An approach based on a genetic algorithm is used in an attempt to avoid this problem. This strategy makes also possible to exploit the parallel nature of evolutionary algorithms as, at each generation, the evaluation of the fitness function of one individual is independent of the fitness of the rest of the population. In this particular implementation, each individual is represented by a gray encoding sequence of genes, the parental selection is performed by means of a tournament selection, the crossover probability is 0.8 and the probability of mutation is 0.05. © Society for Experimental Mechanics 2009.
publishDate 2010
dc.date.none.fl_str_mv 2010
2024-12-07T21:04:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1046-6789
https://repositorio.udesc.br/handle/UDESC/11119
dc.identifier.dark.fl_str_mv ark:/33523/0013000004d2f
identifier_str_mv 1046-6789
ark:/33523/0013000004d2f
url https://repositorio.udesc.br/handle/UDESC/11119
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the Society for Experimental Mechanics, Inc.
67
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 627 - 634
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1848168330515447808