Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions

Bibliographic Details
Main Author: Mathias A.C.*
Publication Date: 2012
Other Authors: Rech P.C.*
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000sgtr
Download full: https://repositorio.udesc.br/handle/UDESC/9156
Summary: This paper reports two-dimensional parameter-space plots for both, the hyperbolic tangent and the piecewise-linear neuron activation functions of a three-dimensional Hopfield neural network. The plots obtained using both neuron activation functions are compared, and we show that similar features are present on them. The occurrence of self-organized periodic structures embedded in chaotic regions is verified for the two cases. © 2012 Elsevier Ltd.
id UDESC-2_496760d3e9e94758c1318f980c2d4f75
oai_identifier_str oai:repositorio.udesc.br:UDESC/9156
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functionsThis paper reports two-dimensional parameter-space plots for both, the hyperbolic tangent and the piecewise-linear neuron activation functions of a three-dimensional Hopfield neural network. The plots obtained using both neuron activation functions are compared, and we show that similar features are present on them. The occurrence of self-organized periodic structures embedded in chaotic regions is verified for the two cases. © 2012 Elsevier Ltd.2024-12-06T19:06:01Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 42 - 451879-278210.1016/j.neunet.2012.06.006https://repositorio.udesc.br/handle/UDESC/9156ark:/33523/001300000sgtrNeural Networks34Mathias A.C.*Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:01:10Zoai:repositorio.udesc.br:UDESC/9156Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:01:10Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
title Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
spellingShingle Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
Mathias A.C.*
title_short Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
title_full Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
title_fullStr Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
title_full_unstemmed Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
title_sort Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions
author Mathias A.C.*
author_facet Mathias A.C.*
Rech P.C.*
author_role author
author2 Rech P.C.*
author2_role author
dc.contributor.author.fl_str_mv Mathias A.C.*
Rech P.C.*
description This paper reports two-dimensional parameter-space plots for both, the hyperbolic tangent and the piecewise-linear neuron activation functions of a three-dimensional Hopfield neural network. The plots obtained using both neuron activation functions are compared, and we show that similar features are present on them. The occurrence of self-organized periodic structures embedded in chaotic regions is verified for the two cases. © 2012 Elsevier Ltd.
publishDate 2012
dc.date.none.fl_str_mv 2012
2024-12-06T19:06:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1879-2782
10.1016/j.neunet.2012.06.006
https://repositorio.udesc.br/handle/UDESC/9156
dc.identifier.dark.fl_str_mv ark:/33523/001300000sgtr
identifier_str_mv 1879-2782
10.1016/j.neunet.2012.06.006
ark:/33523/001300000sgtr
url https://repositorio.udesc.br/handle/UDESC/9156
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Neural Networks
34
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 42 - 45
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258169759268864