Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/0013000006v25 |
Download full: | https://repositorio.udesc.br/handle/UDESC/10144 |
Summary: | In this -work, aspects of discretization errors associated with finite volume (FV) and equivalent finite element (FE) modelling strategies are discussed within the framework of polymer melt flow. The computational approaches are based on the generalized Newtonian model in conjunction with Cross constitutive equation. The numerical examples illustrate one and two-dimensional fluid flows, in which the latter is discretized using structured quadrilateral elements / volumes. A study on the best strategy to compute non-linear viscosities at control volume boundaries is also presented for FV. Based on well established a posteriori error estimation techniques, it is demonstrated that, in this class of problems, FV discretization errors and differences between FE and FV solutions are greatly affected by the scheme used to compute the FV non-linear coefficients at the control volume surfaces. Simulations for rectangular channels show that FE yields smaller global errors then FV for velocity and temperature solutions. Copyright © 2008 by ABCM. |
id |
UDESC-2_35cc304bd75870bf671fd46afc94e5f1 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/10144 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flowIn this -work, aspects of discretization errors associated with finite volume (FV) and equivalent finite element (FE) modelling strategies are discussed within the framework of polymer melt flow. The computational approaches are based on the generalized Newtonian model in conjunction with Cross constitutive equation. The numerical examples illustrate one and two-dimensional fluid flows, in which the latter is discretized using structured quadrilateral elements / volumes. A study on the best strategy to compute non-linear viscosities at control volume boundaries is also presented for FV. Based on well established a posteriori error estimation techniques, it is demonstrated that, in this class of problems, FV discretization errors and differences between FE and FV solutions are greatly affected by the scheme used to compute the FV non-linear coefficients at the control volume surfaces. Simulations for rectangular channels show that FE yields smaller global errors then FV for velocity and temperature solutions. Copyright © 2008 by ABCM.2024-12-06T19:24:31Z2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 197 - 2041806-369110.1590/s1678-58782008000300004https://repositorio.udesc.br/handle/UDESC/10144ark:/33523/0013000006v25Journal of the Brazilian Society of Mechanical Sciences and Engineering303Vaz Jr. M.*Gaertner E.L.Zdanski, Paulo Sergio Bervingengreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:07:08Zoai:repositorio.udesc.br:UDESC/10144Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:07:08Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
title |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
spellingShingle |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow Vaz Jr. M.* |
title_short |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
title_full |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
title_fullStr |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
title_full_unstemmed |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
title_sort |
Aspects of finite element and finite volume equivalence and a posteriori error estimation in polymer melt flow |
author |
Vaz Jr. M.* |
author_facet |
Vaz Jr. M.* Gaertner E.L. Zdanski, Paulo Sergio Berving |
author_role |
author |
author2 |
Gaertner E.L. Zdanski, Paulo Sergio Berving |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Vaz Jr. M.* Gaertner E.L. Zdanski, Paulo Sergio Berving |
description |
In this -work, aspects of discretization errors associated with finite volume (FV) and equivalent finite element (FE) modelling strategies are discussed within the framework of polymer melt flow. The computational approaches are based on the generalized Newtonian model in conjunction with Cross constitutive equation. The numerical examples illustrate one and two-dimensional fluid flows, in which the latter is discretized using structured quadrilateral elements / volumes. A study on the best strategy to compute non-linear viscosities at control volume boundaries is also presented for FV. Based on well established a posteriori error estimation techniques, it is demonstrated that, in this class of problems, FV discretization errors and differences between FE and FV solutions are greatly affected by the scheme used to compute the FV non-linear coefficients at the control volume surfaces. Simulations for rectangular channels show that FE yields smaller global errors then FV for velocity and temperature solutions. Copyright © 2008 by ABCM. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2024-12-06T19:24:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1806-3691 10.1590/s1678-58782008000300004 https://repositorio.udesc.br/handle/UDESC/10144 |
dc.identifier.dark.fl_str_mv |
ark:/33523/0013000006v25 |
identifier_str_mv |
1806-3691 10.1590/s1678-58782008000300004 ark:/33523/0013000006v25 |
url |
https://repositorio.udesc.br/handle/UDESC/10144 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering 30 3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 197 - 204 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258094848999424 |