Basin size evolution between dissipative and conservative limits

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2005
Other Authors: Beims M.W., Gallas J.A.C.
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/00130000086vd
Download full: https://repositorio.udesc.br/handle/UDESC/10398
Summary: Recent methods for stabilizing systems like, e.g., loss-modulated CO 2 lasers, involve inducing controlled monostability via slow parameter modulations. However, such stabilization methods presuppose detailed knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, independently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamiltonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures in phase-space. © 2005 The American Physical Society.
id UDESC-2_3116a3758431e458bd1ec9017d131bfc
oai_identifier_str oai:repositorio.udesc.br:UDESC/10398
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Basin size evolution between dissipative and conservative limitsRecent methods for stabilizing systems like, e.g., loss-modulated CO 2 lasers, involve inducing controlled monostability via slow parameter modulations. However, such stabilization methods presuppose detailed knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, independently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamiltonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures in phase-space. © 2005 The American Physical Society.2024-12-06T19:29:01Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1550-237610.1103/PhysRevE.71.017202https://repositorio.udesc.br/handle/UDESC/10398ark:/33523/00130000086vdPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics711Rech P.C.*Beims M.W.Gallas J.A.C.engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:08:33Zoai:repositorio.udesc.br:UDESC/10398Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:08:33Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Basin size evolution between dissipative and conservative limits
title Basin size evolution between dissipative and conservative limits
spellingShingle Basin size evolution between dissipative and conservative limits
Rech P.C.*
title_short Basin size evolution between dissipative and conservative limits
title_full Basin size evolution between dissipative and conservative limits
title_fullStr Basin size evolution between dissipative and conservative limits
title_full_unstemmed Basin size evolution between dissipative and conservative limits
title_sort Basin size evolution between dissipative and conservative limits
author Rech P.C.*
author_facet Rech P.C.*
Beims M.W.
Gallas J.A.C.
author_role author
author2 Beims M.W.
Gallas J.A.C.
author2_role author
author
dc.contributor.author.fl_str_mv Rech P.C.*
Beims M.W.
Gallas J.A.C.
description Recent methods for stabilizing systems like, e.g., loss-modulated CO 2 lasers, involve inducing controlled monostability via slow parameter modulations. However, such stabilization methods presuppose detailed knowledge of the structure and size of basins of attraction. In this Brief Report, we numerically investigate basin size evolution when parameters are varied between dissipative and conservative limits. Basin volumes shrink fast as the conservative limit is approached, being well approximated by Gaussian profiles, independently of the period. Basin shrinkage and vanishing is due to the absence of bounded motions in the Hamiltonian limit. In addition, we find basin volume to remain essentially constant along a peculiar parameter path along which it is possible to recover the dissipation rate solely from metric properties of self-similar structures in phase-space. © 2005 The American Physical Society.
publishDate 2005
dc.date.none.fl_str_mv 2005
2024-12-06T19:29:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1550-2376
10.1103/PhysRevE.71.017202
https://repositorio.udesc.br/handle/UDESC/10398
dc.identifier.dark.fl_str_mv ark:/33523/00130000086vd
identifier_str_mv 1550-2376
10.1103/PhysRevE.71.017202
ark:/33523/00130000086vd
url https://repositorio.udesc.br/handle/UDESC/10398
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
71
1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258101449785344