Hyperchaotic states in the parameter-space
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000j50q |
Download full: | https://repositorio.udesc.br/handle/UDESC/9293 |
Summary: | In this paper we propose a numerical method to characterize hyperchaotic points in the parameter-space of continuous-time dynamical systems. The method considers the second largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct two-dimensional parameter-space color plots. Different levels of hyperchaos in these plots are represented by a continuously changing yellow-red scale. As an example, a particular system modeled by a set of four nonlinear autonomous first-order ordinary differential equations is considered. Practical applications of these plots include, by instance, walking in the parameter-space of hyperchaotic systems along desirable paths. © 2011 Elsevier Inc. All rights reserved. |
id |
UDESC-2_267ccc8c829e68ac36282725a7a3deff |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/9293 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Hyperchaotic states in the parameter-spaceIn this paper we propose a numerical method to characterize hyperchaotic points in the parameter-space of continuous-time dynamical systems. The method considers the second largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct two-dimensional parameter-space color plots. Different levels of hyperchaos in these plots are represented by a continuously changing yellow-red scale. As an example, a particular system modeled by a set of four nonlinear autonomous first-order ordinary differential equations is considered. Practical applications of these plots include, by instance, walking in the parameter-space of hyperchaotic systems along desirable paths. © 2011 Elsevier Inc. All rights reserved.2024-12-06T19:08:38Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 6711 - 67150096-300310.1016/j.amc.2011.12.035https://repositorio.udesc.br/handle/UDESC/9293ark:/33523/001300000j50qApplied Mathematics and Computation21812Correia M.J.*Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:01:49Zoai:repositorio.udesc.br:UDESC/9293Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:01:49Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Hyperchaotic states in the parameter-space |
title |
Hyperchaotic states in the parameter-space |
spellingShingle |
Hyperchaotic states in the parameter-space Correia M.J.* |
title_short |
Hyperchaotic states in the parameter-space |
title_full |
Hyperchaotic states in the parameter-space |
title_fullStr |
Hyperchaotic states in the parameter-space |
title_full_unstemmed |
Hyperchaotic states in the parameter-space |
title_sort |
Hyperchaotic states in the parameter-space |
author |
Correia M.J.* |
author_facet |
Correia M.J.* Rech P.C.* |
author_role |
author |
author2 |
Rech P.C.* |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Correia M.J.* Rech P.C.* |
description |
In this paper we propose a numerical method to characterize hyperchaotic points in the parameter-space of continuous-time dynamical systems. The method considers the second largest Lyapunov exponent value as a measure of hyperchaotic motion, to construct two-dimensional parameter-space color plots. Different levels of hyperchaos in these plots are represented by a continuously changing yellow-red scale. As an example, a particular system modeled by a set of four nonlinear autonomous first-order ordinary differential equations is considered. Practical applications of these plots include, by instance, walking in the parameter-space of hyperchaotic systems along desirable paths. © 2011 Elsevier Inc. All rights reserved. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 2024-12-06T19:08:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0096-3003 10.1016/j.amc.2011.12.035 https://repositorio.udesc.br/handle/UDESC/9293 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000j50q |
identifier_str_mv |
0096-3003 10.1016/j.amc.2011.12.035 ark:/33523/001300000j50q |
url |
https://repositorio.udesc.br/handle/UDESC/9293 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Mathematics and Computation 218 12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 6711 - 6715 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258136094736384 |