Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2024
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/0013000001rg3
Download full: https://repositorio.udesc.br/handle/UDESC/1792
Summary: © 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Física.In this manuscript, we report on aspects of dynamical behaviors of a continuous-time autonomous six-dimensional system, wich was designed by bidirectionally coupling two chaotic Lorenz systems through a linear function. The two-dimensional parameter-space generated by considering the parameters a and c present in the coupling function is investigated. We show that the considered bidirectional coupling is responsible for the occurrence of chaos suppression, characterized by the presence of periodic and quasiperiodic regions in the (a, c) parameter-space of the coupled system. As a consequence of the coupling, hyperchaos regions with two positive Lyapunov exponents also are observed in the (a, c) parameter-space. We also show that the (a, c) parameter-space exhibits periodic structures embedded in chaotic regions, being their periods organized in period-adding sequences, whose period increment rate is equal to the period of the region on whose boundary the structures accumulate.
id UDESC-2_12c0e2e08ea4b7af368ad3fa63a7e1bc
oai_identifier_str oai:repositorio.udesc.br:UDESC/1792
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems© 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Física.In this manuscript, we report on aspects of dynamical behaviors of a continuous-time autonomous six-dimensional system, wich was designed by bidirectionally coupling two chaotic Lorenz systems through a linear function. The two-dimensional parameter-space generated by considering the parameters a and c present in the coupling function is investigated. We show that the considered bidirectional coupling is responsible for the occurrence of chaos suppression, characterized by the presence of periodic and quasiperiodic regions in the (a, c) parameter-space of the coupled system. As a consequence of the coupling, hyperchaos regions with two positive Lyapunov exponents also are observed in the (a, c) parameter-space. We also show that the (a, c) parameter-space exhibits periodic structures embedded in chaotic regions, being their periods organized in period-adding sequences, whose period increment rate is equal to the period of the region on whose boundary the structures accumulate.2024-12-05T13:36:03Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1678-444810.1007/s13538-023-01392-9https://repositorio.udesc.br/handle/UDESC/1792ark:/33523/0013000001rg3Brazilian Journal of Physics541Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:36:52Zoai:repositorio.udesc.br:UDESC/1792Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:36:52Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
title Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
spellingShingle Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
Rech P.C.*
title_short Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
title_full Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
title_fullStr Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
title_full_unstemmed Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
title_sort Complex Dynamics of a Linear Coupling of Two Chaotic Lorenz Systems
author Rech P.C.*
author_facet Rech P.C.*
author_role author
dc.contributor.author.fl_str_mv Rech P.C.*
description © 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Física.In this manuscript, we report on aspects of dynamical behaviors of a continuous-time autonomous six-dimensional system, wich was designed by bidirectionally coupling two chaotic Lorenz systems through a linear function. The two-dimensional parameter-space generated by considering the parameters a and c present in the coupling function is investigated. We show that the considered bidirectional coupling is responsible for the occurrence of chaos suppression, characterized by the presence of periodic and quasiperiodic regions in the (a, c) parameter-space of the coupled system. As a consequence of the coupling, hyperchaos regions with two positive Lyapunov exponents also are observed in the (a, c) parameter-space. We also show that the (a, c) parameter-space exhibits periodic structures embedded in chaotic regions, being their periods organized in period-adding sequences, whose period increment rate is equal to the period of the region on whose boundary the structures accumulate.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-05T13:36:03Z
2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1678-4448
10.1007/s13538-023-01392-9
https://repositorio.udesc.br/handle/UDESC/1792
dc.identifier.dark.fl_str_mv ark:/33523/0013000001rg3
identifier_str_mv 1678-4448
10.1007/s13538-023-01392-9
ark:/33523/0013000001rg3
url https://repositorio.udesc.br/handle/UDESC/1792
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
54
1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258075466072064