Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil

Bibliographic Details
Main Author: Bonini, Jose Eduardo
Publication Date: 2022
Other Authors: Vieira, Bianca Carvalho, Ross, Jurandyr Luciano Sanches, Bateira, Carlos Valdir de Meneses, Martins, Tiago Damas
Format: Article
Language: por
Source: Derbyana
Download full: https://revistaig.emnuvens.com.br/derbyana/article/view/764
Summary: In Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view.
id SIMAESP_2a62e9818a7e94e303bcfd81ba632160
oai_identifier_str oai:ojs.revistaig.emnuvens.com.br:article/764
network_acronym_str SIMAESP
network_name_str Derbyana
repository_id_str
spelling Analysis of geomorphological parameters for landslide susceptibility in southeastern BrazilAnálise de parâmetros geomorfológicos na suscetibilidade a escorregamentos no sudeste brasileiroMovimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-ParaibunaMass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna HighlandsIn Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view.Escorregamentos são fenômenos recorrentes no Brasil, em especial na Serra do Mar, uma cadeia montanhosa que se prolonga por aproximadamente 1.500 km na costa brasileira do Sul e Sudeste. Inúmeros trabalhos têm tratado das implicações de diferentes parâmetros controladores da suscetibilidade à ocorrência de tais processos, principalmente no front oriental da Serra do Mar. O objetivo deste artigo é identificar os fatores condicionantes mais relevantes para o mapeamento da suscetibilidade a escorregamentos no Planalto de Paraitinga-Paraibuna (Sudeste do Brasil), uma área intensamente afetada por escorregamentos e inundações deflagrados após um evento extremo de precipitação no verão de 2009-2010. Para isso, as relações entre diferentes fatores condicionantes (ângulo, aspecto, Índice Topográfico de Umidade, litologia e uso da terra) e a distribuição de cicatrizes foram avaliadas a partir de uma análise de correlação. Em seguida, o modelo do Valor Informativo e um método de seleção de variáveis baseado na contribuição de cada fator condicionante para o desempenho do modelo e em sua capacidade de discriminação entre classes instáveis e estáveis foram aplicados. Dois cenários de suscetibilidade foram produzidos: um utilizando apenas os fatores selecionados (S2) e outro utilizando todos os fatores condicionantes (S6). Ambos os cenários foram validados utilizando curvas ROC (Receiver Operating Characteristic) e comparados a partir do Kappa de Cohen. Nossos resultados mostraram que o ângulo das encostas e o Índice Topográfico de Umidade (TWI) são os principais fatores condicionantes. A análise ROC mostrou que o cenário S6 possui melhor desempenho e capacidade preditiva que o cenário S2. Porém, o menor desempenho e capacidade preditiva de S2 em comparação com S6 reflete a escassez de dados geográficos detalhados e não a inadequação do método de seleção de variáveis aplicado. Os valores do Kappa de Cohen mostraram maior consistência entre os cenários na identificação das classes de suscetibilidade Muito Alta e Muito Baixa. Devido à escassez de dados geográficos detalhados na maioria das áreas de estudo no Brasil, sugerimos que a seleção das variáveis seja baseada no conhecimento do operador quanto ao modelo estatístico e em seu conhecimento do ponto de vista geomorfológico.Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP2022-09-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://revistaig.emnuvens.com.br/derbyana/article/view/76410.14295/derb.v43.764Derbyana; Vol. 43 (2022); e764Derbyana; Vol. 43 (2022); e764Derbyana; v. 43 (2022); e7642764-1465reponame:Derbyanainstname:Secretaria de Infraestrutura e Meio Ambiente do Estado de São Pauloinstacron:SIMAESPporhttps://revistaig.emnuvens.com.br/derbyana/article/view/764/738Copyright (c) 2022 Jose Eduardo Bonini, Bianca Carvalho Vieira, Jurandyr Luciano Sanches Ross, Carlos Valdir de Meneses Bateira, Tiago Damas Martinsinfo:eu-repo/semantics/openAccessBonini, Jose EduardoVieira, Bianca CarvalhoRoss, Jurandyr Luciano SanchesBateira, Carlos Valdir de MenesesMartins, Tiago Damas2022-09-27T16:35:52Zoai:ojs.revistaig.emnuvens.com.br:article/764Revistahttps://revistaig.emnuvens.com.br/derbyanaPUBhttps://revistaig.emnuvens.com.br/derbyana/oaiderbyana.journal@gmail.com | shiruma@sp.gov.br2764-14652764-1465opendoar:2022-09-27T16:35:52Derbyana - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulofalse
dc.title.none.fl_str_mv Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
Análise de parâmetros geomorfológicos na suscetibilidade a escorregamentos no sudeste brasileiro
title Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
spellingShingle Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
Bonini, Jose Eduardo
Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna
Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands
title_short Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
title_full Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
title_fullStr Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
title_full_unstemmed Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
title_sort Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
author Bonini, Jose Eduardo
author_facet Bonini, Jose Eduardo
Vieira, Bianca Carvalho
Ross, Jurandyr Luciano Sanches
Bateira, Carlos Valdir de Meneses
Martins, Tiago Damas
author_role author
author2 Vieira, Bianca Carvalho
Ross, Jurandyr Luciano Sanches
Bateira, Carlos Valdir de Meneses
Martins, Tiago Damas
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Bonini, Jose Eduardo
Vieira, Bianca Carvalho
Ross, Jurandyr Luciano Sanches
Bateira, Carlos Valdir de Meneses
Martins, Tiago Damas
dc.subject.por.fl_str_mv Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna
Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands
topic Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna
Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands
description In Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Artigo avaliado pelos Pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistaig.emnuvens.com.br/derbyana/article/view/764
10.14295/derb.v43.764
url https://revistaig.emnuvens.com.br/derbyana/article/view/764
identifier_str_mv 10.14295/derb.v43.764
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revistaig.emnuvens.com.br/derbyana/article/view/764/738
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP
publisher.none.fl_str_mv Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP
dc.source.none.fl_str_mv Derbyana; Vol. 43 (2022); e764
Derbyana; Vol. 43 (2022); e764
Derbyana; v. 43 (2022); e764
2764-1465
reponame:Derbyana
instname:Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo
instacron:SIMAESP
instname_str Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo
instacron_str SIMAESP
institution SIMAESP
reponame_str Derbyana
collection Derbyana
repository.name.fl_str_mv Derbyana - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo
repository.mail.fl_str_mv derbyana.journal@gmail.com | shiruma@sp.gov.br
_version_ 1838465476145971200