Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | por |
| Source: | Derbyana |
| Download full: | https://revistaig.emnuvens.com.br/derbyana/article/view/764 |
Summary: | In Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view. |
| id |
SIMAESP_2a62e9818a7e94e303bcfd81ba632160 |
|---|---|
| oai_identifier_str |
oai:ojs.revistaig.emnuvens.com.br:article/764 |
| network_acronym_str |
SIMAESP |
| network_name_str |
Derbyana |
| repository_id_str |
|
| spelling |
Analysis of geomorphological parameters for landslide susceptibility in southeastern BrazilAnálise de parâmetros geomorfológicos na suscetibilidade a escorregamentos no sudeste brasileiroMovimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-ParaibunaMass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna HighlandsIn Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view.Escorregamentos são fenômenos recorrentes no Brasil, em especial na Serra do Mar, uma cadeia montanhosa que se prolonga por aproximadamente 1.500 km na costa brasileira do Sul e Sudeste. Inúmeros trabalhos têm tratado das implicações de diferentes parâmetros controladores da suscetibilidade à ocorrência de tais processos, principalmente no front oriental da Serra do Mar. O objetivo deste artigo é identificar os fatores condicionantes mais relevantes para o mapeamento da suscetibilidade a escorregamentos no Planalto de Paraitinga-Paraibuna (Sudeste do Brasil), uma área intensamente afetada por escorregamentos e inundações deflagrados após um evento extremo de precipitação no verão de 2009-2010. Para isso, as relações entre diferentes fatores condicionantes (ângulo, aspecto, Índice Topográfico de Umidade, litologia e uso da terra) e a distribuição de cicatrizes foram avaliadas a partir de uma análise de correlação. Em seguida, o modelo do Valor Informativo e um método de seleção de variáveis baseado na contribuição de cada fator condicionante para o desempenho do modelo e em sua capacidade de discriminação entre classes instáveis e estáveis foram aplicados. Dois cenários de suscetibilidade foram produzidos: um utilizando apenas os fatores selecionados (S2) e outro utilizando todos os fatores condicionantes (S6). Ambos os cenários foram validados utilizando curvas ROC (Receiver Operating Characteristic) e comparados a partir do Kappa de Cohen. Nossos resultados mostraram que o ângulo das encostas e o Índice Topográfico de Umidade (TWI) são os principais fatores condicionantes. A análise ROC mostrou que o cenário S6 possui melhor desempenho e capacidade preditiva que o cenário S2. Porém, o menor desempenho e capacidade preditiva de S2 em comparação com S6 reflete a escassez de dados geográficos detalhados e não a inadequação do método de seleção de variáveis aplicado. Os valores do Kappa de Cohen mostraram maior consistência entre os cenários na identificação das classes de suscetibilidade Muito Alta e Muito Baixa. Devido à escassez de dados geográficos detalhados na maioria das áreas de estudo no Brasil, sugerimos que a seleção das variáveis seja baseada no conhecimento do operador quanto ao modelo estatístico e em seu conhecimento do ponto de vista geomorfológico.Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP2022-09-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://revistaig.emnuvens.com.br/derbyana/article/view/76410.14295/derb.v43.764Derbyana; Vol. 43 (2022); e764Derbyana; Vol. 43 (2022); e764Derbyana; v. 43 (2022); e7642764-1465reponame:Derbyanainstname:Secretaria de Infraestrutura e Meio Ambiente do Estado de São Pauloinstacron:SIMAESPporhttps://revistaig.emnuvens.com.br/derbyana/article/view/764/738Copyright (c) 2022 Jose Eduardo Bonini, Bianca Carvalho Vieira, Jurandyr Luciano Sanches Ross, Carlos Valdir de Meneses Bateira, Tiago Damas Martinsinfo:eu-repo/semantics/openAccessBonini, Jose EduardoVieira, Bianca CarvalhoRoss, Jurandyr Luciano SanchesBateira, Carlos Valdir de MenesesMartins, Tiago Damas2022-09-27T16:35:52Zoai:ojs.revistaig.emnuvens.com.br:article/764Revistahttps://revistaig.emnuvens.com.br/derbyanaPUBhttps://revistaig.emnuvens.com.br/derbyana/oaiderbyana.journal@gmail.com | shiruma@sp.gov.br2764-14652764-1465opendoar:2022-09-27T16:35:52Derbyana - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulofalse |
| dc.title.none.fl_str_mv |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil Análise de parâmetros geomorfológicos na suscetibilidade a escorregamentos no sudeste brasileiro |
| title |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| spellingShingle |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil Bonini, Jose Eduardo Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands |
| title_short |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| title_full |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| title_fullStr |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| title_full_unstemmed |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| title_sort |
Analysis of geomorphological parameters for landslide susceptibility in southeastern Brazil |
| author |
Bonini, Jose Eduardo |
| author_facet |
Bonini, Jose Eduardo Vieira, Bianca Carvalho Ross, Jurandyr Luciano Sanches Bateira, Carlos Valdir de Meneses Martins, Tiago Damas |
| author_role |
author |
| author2 |
Vieira, Bianca Carvalho Ross, Jurandyr Luciano Sanches Bateira, Carlos Valdir de Meneses Martins, Tiago Damas |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Bonini, Jose Eduardo Vieira, Bianca Carvalho Ross, Jurandyr Luciano Sanches Bateira, Carlos Valdir de Meneses Martins, Tiago Damas |
| dc.subject.por.fl_str_mv |
Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands |
| topic |
Movimentos de Massa; Valor Informativo; ROC; Kappa de Cohen; Planalto de Paraitinga-Paraibuna Mass movements; Information Value; ROC; Cohen’s Kappa; Paraitinga Paraibuna Highlands |
| description |
In Brazil, shallow landslides are a frequent phenomenon, especially in the Serra do Mar, a mountain range extending for approximately 1,500 km in the South and Southeastern coast. Several studies aimed to analyze the controls of different conditioning factors on landslide susceptibility, mainly on the oriental front of the Serra do Mar. This article aimed to identify the most relevant conditioning factors for landslide susceptibility mapping in the Paraitinga-Paraibuna Highlands (Southeast Brazil), an area intensely affected by landslides and floods triggered by intense rainstorms in summer durring 2009-2010. Initially, a correlation analysis was performed to quantify the association between different conditioning factors (slope, aspect, Topographic Wetness Index, lithology, and land use) and the available landslide inventory. Then, the information value bivariate statistical model and a variable selection procedure, based on the contribution of each factor to the model performance and its capacity of separating unstable and stable classes, were applied. Two susceptibility scenarios were built: one using only the most relevant factor identified using the variable selection procedure (S2) and another using all available conditioning factors (S6). Both scenarios were validated using Receiver Operating Characteristic (ROC) curves and compared with Cohen’s kappa. Our results show that the slope gradient and the Topographic Wetness Index (TWI) are the most relevant factors for susceptibility mapping in the Paraitinga-Paraibuna Highlands. The ROC analysis showed that S6 has a better performance and predictive capacity than of S2. However, the better results obtained by S6 are a function of the scarcity of detailed geographical information and do not demonstrate the inadequacy of the variable selection procedure, since Cohen’s kappa showed that exists a better agreement between S2 and S6 for areas classified in the very high and very low susceptibility classes. Due to the scarcity of detailed geographical data in most study areas in Brazil, we suggest that the selection of variables should be based on the operator’s knowledge on the statistical model as well as on his knowledge from the geomorphological point of view. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09-27 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos Pares |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://revistaig.emnuvens.com.br/derbyana/article/view/764 10.14295/derb.v43.764 |
| url |
https://revistaig.emnuvens.com.br/derbyana/article/view/764 |
| identifier_str_mv |
10.14295/derb.v43.764 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://revistaig.emnuvens.com.br/derbyana/article/view/764/738 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP |
| publisher.none.fl_str_mv |
Instituto de Pesquisas Ambientais, Secretaria de Infraestrutura e Meio Ambiente/SP |
| dc.source.none.fl_str_mv |
Derbyana; Vol. 43 (2022); e764 Derbyana; Vol. 43 (2022); e764 Derbyana; v. 43 (2022); e764 2764-1465 reponame:Derbyana instname:Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo instacron:SIMAESP |
| instname_str |
Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo |
| instacron_str |
SIMAESP |
| institution |
SIMAESP |
| reponame_str |
Derbyana |
| collection |
Derbyana |
| repository.name.fl_str_mv |
Derbyana - Secretaria de Infraestrutura e Meio Ambiente do Estado de São Paulo |
| repository.mail.fl_str_mv |
derbyana.journal@gmail.com | shiruma@sp.gov.br |
| _version_ |
1838465476145971200 |