The Mercator projection on the sphere: a deduction without mathematical gaps
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , , |
Format: | preprint |
Language: | eng |
Source: | SciELO Preprints |
Download full: | https://preprints.scielo.org/index.php/scielo/preprint/view/11297 |
Summary: | Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents. |
id |
SCI-1_73c8a13aa715f4fcef7ac5f5bcf2fff6 |
---|---|
oai_identifier_str |
oai:ops.preprints.scielo.org:preprint/11297 |
network_acronym_str |
SCI-1 |
network_name_str |
SciELO Preprints |
repository_id_str |
|
spelling |
The Mercator projection on the sphere: a deduction without mathematical gapsLA PROYECCIÓN DE MERCATOR SOBRE LA ESFERA: UNA DEDUCCIÓN SIN LAGUNAS MATEMÁTICASThe Mercator projection on the sphere: a deduction without mathematical gapsCartografia matemáticaMapeamentoProjeção cilíndrica conformeMathematical CartographyMappingCylindrical conformal projectionCartografía matemáticaMapeoProyección cilíndrica conformeMap projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents.La proyección cartográfica es el proceso matemático de convertir la superficie de la Tierra, considerada como una esfera o un elipsoide, en un mapa. Esta conversión se realiza proyectando puntos de la Tierra sobre una superficie, que puede ser un plano, un cono o un cilindro. Así, su objetivo es crear una base matemática para la creación de mapas, imprescindible para la cartografía, geodesia y navegación. Sería ideal que todos los mapas fueran isométricos, sin embargo, para áreas grandes, la curvatura de la Tierra genera distorsiones. Por las razones expuestas, las matemáticas de las proyecciones cartográficas son complejas, pero es importante comprenderlas. Entre los varios tipos que existen, la proyección Mercator, creada por Gerard Mercator en 1569, es una proyección cilíndrica conforme, muy utilizada en navegación, ya que representa las líneas de rumbo en el mapa como líneas rectas, pero, a pesar de conservar los ángulos, genera otras distorsiones. El objetivo de este artículo es presentar una derivación matemática la más completa posible de la proyección de Mercator sobre la esfera, con el fin de evitar al máximo simplificaciones y omisiones, y, como aplicación, utilizar las ecuaciones deducidas para implementar una visualización de los continentes en Python.Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a complete mathematical derivation of the Mercator projection on the sphere, avoiding simplifications and omissions as much as possible. As an application, the deduced equations will be used to implement a visualization of the continents in Python.SciELO PreprintsSciELO PreprintsSciELO Preprints2025-04-25info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/1129710.1590/SciELOPreprints.11297enghttps://preprints.scielo.org/index.php/scielo/preprint/view/11297/21603Copyright (c) 2025 Isaac Ramos, Andrea de Seixas, Silvio Jacks dos Anjos Garnés, Lucas Gonzales Lima Pereira Caladohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRamos, Isaacde Seixas, AndreaJacks dos Anjos Garnés, SilvioGonzales Lima Pereira Calado, Lucasreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2025-02-18T14:26:13Zoai:ops.preprints.scielo.org:preprint/11297Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2025-02-18T14:26:13SciELO Preprints - Scientific Electronic Library Online (SCIELO)false |
dc.title.none.fl_str_mv |
The Mercator projection on the sphere: a deduction without mathematical gaps LA PROYECCIÓN DE MERCATOR SOBRE LA ESFERA: UNA DEDUCCIÓN SIN LAGUNAS MATEMÁTICAS The Mercator projection on the sphere: a deduction without mathematical gaps |
title |
The Mercator projection on the sphere: a deduction without mathematical gaps |
spellingShingle |
The Mercator projection on the sphere: a deduction without mathematical gaps Ramos, Isaac Cartografia matemática Mapeamento Projeção cilíndrica conforme Mathematical Cartography Mapping Cylindrical conformal projection Cartografía matemática Mapeo Proyección cilíndrica conforme |
title_short |
The Mercator projection on the sphere: a deduction without mathematical gaps |
title_full |
The Mercator projection on the sphere: a deduction without mathematical gaps |
title_fullStr |
The Mercator projection on the sphere: a deduction without mathematical gaps |
title_full_unstemmed |
The Mercator projection on the sphere: a deduction without mathematical gaps |
title_sort |
The Mercator projection on the sphere: a deduction without mathematical gaps |
author |
Ramos, Isaac |
author_facet |
Ramos, Isaac de Seixas, Andrea Jacks dos Anjos Garnés, Silvio Gonzales Lima Pereira Calado, Lucas |
author_role |
author |
author2 |
de Seixas, Andrea Jacks dos Anjos Garnés, Silvio Gonzales Lima Pereira Calado, Lucas |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ramos, Isaac de Seixas, Andrea Jacks dos Anjos Garnés, Silvio Gonzales Lima Pereira Calado, Lucas |
dc.subject.por.fl_str_mv |
Cartografia matemática Mapeamento Projeção cilíndrica conforme Mathematical Cartography Mapping Cylindrical conformal projection Cartografía matemática Mapeo Proyección cilíndrica conforme |
topic |
Cartografia matemática Mapeamento Projeção cilíndrica conforme Mathematical Cartography Mapping Cylindrical conformal projection Cartografía matemática Mapeo Proyección cilíndrica conforme |
description |
Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/preprint info:eu-repo/semantics/publishedVersion |
format |
preprint |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/11297 10.1590/SciELOPreprints.11297 |
url |
https://preprints.scielo.org/index.php/scielo/preprint/view/11297 |
identifier_str_mv |
10.1590/SciELOPreprints.11297 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://preprints.scielo.org/index.php/scielo/preprint/view/11297/21603 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
publisher.none.fl_str_mv |
SciELO Preprints SciELO Preprints SciELO Preprints |
dc.source.none.fl_str_mv |
reponame:SciELO Preprints instname:Scientific Electronic Library Online (SCIELO) instacron:SCI |
instname_str |
Scientific Electronic Library Online (SCIELO) |
instacron_str |
SCI |
institution |
SCI |
reponame_str |
SciELO Preprints |
collection |
SciELO Preprints |
repository.name.fl_str_mv |
SciELO Preprints - Scientific Electronic Library Online (SCIELO) |
repository.mail.fl_str_mv |
scielo.submission@scielo.org |
_version_ |
1831964361681272832 |