The Mercator projection on the sphere: a deduction without mathematical gaps

Bibliographic Details
Main Author: Ramos, Isaac
Publication Date: 2025
Other Authors: de Seixas, Andrea, Jacks dos Anjos Garnés, Silvio, Gonzales Lima Pereira Calado, Lucas
Format: preprint
Language: eng
Source: SciELO Preprints
Download full: https://preprints.scielo.org/index.php/scielo/preprint/view/11297
Summary: Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents.
id SCI-1_73c8a13aa715f4fcef7ac5f5bcf2fff6
oai_identifier_str oai:ops.preprints.scielo.org:preprint/11297
network_acronym_str SCI-1
network_name_str SciELO Preprints
repository_id_str
spelling The Mercator projection on the sphere: a deduction without mathematical gapsLA PROYECCIÓN DE MERCATOR SOBRE LA ESFERA: UNA DEDUCCIÓN SIN LAGUNAS MATEMÁTICASThe Mercator projection on the sphere: a deduction without mathematical gapsCartografia matemáticaMapeamentoProjeção cilíndrica conformeMathematical CartographyMappingCylindrical conformal projectionCartografía matemáticaMapeoProyección cilíndrica conformeMap projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents.La proyección cartográfica es el proceso matemático de convertir la superficie de la Tierra, considerada como una esfera o un elipsoide, en un mapa. Esta conversión se realiza proyectando puntos de la Tierra sobre una superficie, que puede ser un plano, un cono o un cilindro. Así, su objetivo es crear una base matemática para la creación de mapas, imprescindible para la cartografía, geodesia y navegación. Sería ideal que todos los mapas fueran isométricos, sin embargo, para áreas grandes, la curvatura de la Tierra genera distorsiones. Por las razones expuestas, las matemáticas de las proyecciones cartográficas son complejas, pero es importante comprenderlas. Entre los varios tipos que existen, la proyección Mercator, creada por Gerard Mercator en 1569, es una proyección cilíndrica conforme, muy utilizada en navegación, ya que representa las líneas de rumbo en el mapa como líneas rectas, pero, a pesar de conservar los ángulos, genera otras distorsiones. El objetivo de este artículo es presentar una derivación matemática la más completa posible de la proyección de Mercator sobre la esfera, con el fin de evitar al máximo simplificaciones y omisiones, y, como aplicación, utilizar las ecuaciones deducidas para implementar una visualización de los continentes en Python.Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a complete mathematical derivation of the Mercator projection on the sphere, avoiding simplifications and omissions as much as possible. As an application, the deduced equations will be used to implement a visualization of the continents in Python.SciELO PreprintsSciELO PreprintsSciELO Preprints2025-04-25info:eu-repo/semantics/preprintinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://preprints.scielo.org/index.php/scielo/preprint/view/1129710.1590/SciELOPreprints.11297enghttps://preprints.scielo.org/index.php/scielo/preprint/view/11297/21603Copyright (c) 2025 Isaac Ramos, Andrea de Seixas, Silvio Jacks dos Anjos Garnés, Lucas Gonzales Lima Pereira Caladohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessRamos, Isaacde Seixas, AndreaJacks dos Anjos Garnés, SilvioGonzales Lima Pereira Calado, Lucasreponame:SciELO Preprintsinstname:Scientific Electronic Library Online (SCIELO)instacron:SCI2025-02-18T14:26:13Zoai:ops.preprints.scielo.org:preprint/11297Servidor de preprintshttps://preprints.scielo.org/index.php/scieloONGhttps://preprints.scielo.org/index.php/scielo/oaiscielo.submission@scielo.orgopendoar:2025-02-18T14:26:13SciELO Preprints - Scientific Electronic Library Online (SCIELO)false
dc.title.none.fl_str_mv The Mercator projection on the sphere: a deduction without mathematical gaps
LA PROYECCIÓN DE MERCATOR SOBRE LA ESFERA: UNA DEDUCCIÓN SIN LAGUNAS MATEMÁTICAS
The Mercator projection on the sphere: a deduction without mathematical gaps
title The Mercator projection on the sphere: a deduction without mathematical gaps
spellingShingle The Mercator projection on the sphere: a deduction without mathematical gaps
Ramos, Isaac
Cartografia matemática
Mapeamento
Projeção cilíndrica conforme
Mathematical Cartography
Mapping
Cylindrical conformal projection
Cartografía matemática
Mapeo
Proyección cilíndrica conforme
title_short The Mercator projection on the sphere: a deduction without mathematical gaps
title_full The Mercator projection on the sphere: a deduction without mathematical gaps
title_fullStr The Mercator projection on the sphere: a deduction without mathematical gaps
title_full_unstemmed The Mercator projection on the sphere: a deduction without mathematical gaps
title_sort The Mercator projection on the sphere: a deduction without mathematical gaps
author Ramos, Isaac
author_facet Ramos, Isaac
de Seixas, Andrea
Jacks dos Anjos Garnés, Silvio
Gonzales Lima Pereira Calado, Lucas
author_role author
author2 de Seixas, Andrea
Jacks dos Anjos Garnés, Silvio
Gonzales Lima Pereira Calado, Lucas
author2_role author
author
author
dc.contributor.author.fl_str_mv Ramos, Isaac
de Seixas, Andrea
Jacks dos Anjos Garnés, Silvio
Gonzales Lima Pereira Calado, Lucas
dc.subject.por.fl_str_mv Cartografia matemática
Mapeamento
Projeção cilíndrica conforme
Mathematical Cartography
Mapping
Cylindrical conformal projection
Cartografía matemática
Mapeo
Proyección cilíndrica conforme
topic Cartografia matemática
Mapeamento
Projeção cilíndrica conforme
Mathematical Cartography
Mapping
Cylindrical conformal projection
Cartografía matemática
Mapeo
Proyección cilíndrica conforme
description Map projection is the mathematical process of converting the Earth's surface, considered as a sphere or an ellipsoid, into a map. This conversion is performed by projecting the Earth's points onto a surface, which can be a plane, a cone, or a cylinder. Its basic objective is to develop a mathematical basis for creating maps, essential in areas such as cartography, geodesy, and navigation. It would be ideal if all maps were isometric, but for large areas, the curvature of the Earth makes it impossible, causing distortions. For the reasons above, the mathematics behind map projection is complex, but it is important to understand it. Among the most varied types, the Mercator projection, created by Gerard Mercator in 1569, is a conformal cylindrical projection, widely used in navigation, as it represents the rhumb lines on the map as straight lines, but, despite preserving angles, it generates other distortions. The objective of this article is to present a mathematical derivation as complete as possible of the Mercator projection on the sphere, with the purpose of avoiding simplifications and omissions as much as possible, and, as an application, to use the deduced equations to implement in Python a visualization of the continents.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/preprint
info:eu-repo/semantics/publishedVersion
format preprint
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/11297
10.1590/SciELOPreprints.11297
url https://preprints.scielo.org/index.php/scielo/preprint/view/11297
identifier_str_mv 10.1590/SciELOPreprints.11297
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://preprints.scielo.org/index.php/scielo/preprint/view/11297/21603
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
publisher.none.fl_str_mv SciELO Preprints
SciELO Preprints
SciELO Preprints
dc.source.none.fl_str_mv reponame:SciELO Preprints
instname:Scientific Electronic Library Online (SCIELO)
instacron:SCI
instname_str Scientific Electronic Library Online (SCIELO)
instacron_str SCI
institution SCI
reponame_str SciELO Preprints
collection SciELO Preprints
repository.name.fl_str_mv SciELO Preprints - Scientific Electronic Library Online (SCIELO)
repository.mail.fl_str_mv scielo.submission@scielo.org
_version_ 1831964361681272832