Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | por |
Source: | Repositório Institucional da UFSCAR |
Download full: | https://repositorio.ufscar.br/handle/20.500.14289/11443 |
Summary: | To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources. |
id |
SCAR_a8ce81a8f54a7c3971b6eade6c9c2ff1 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/11443 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Figueira de Faria, Luis FilipeSilva, João Eduardo Azevedo Ramos dahttp://lattes.cnpq.br/3823047207711289http://lattes.cnpq.br/511005334797071152d9d1cf-33b6-4721-bcc1-75e3261a825e2019-05-31T14:09:57Z2019-05-31T14:09:57Z2019-03-19FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443.https://repositorio.ufscar.br/handle/20.500.14289/11443To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources.Para a distribuição física de produtos acabados, os embarcadores podem contratar empresas transportadoras para atender à demanda prevista pelos clientes. Entretanto, o contrato celebrado entre embarcadores e transportadores possui decisões conjuntas que devem ser tomadas em diversos horizontes de planejamento: estratégico, tático e operacional. Essa questão, conhecida como problema de dimensionamento ou composição de frota, possui diversas abordagens tradicionais reportadas na literatura, dividindo-se principalmente entre duas técnicas da Pesquisa Operacional: Simulação e Otimização de Sistemas. Contudo, sabe-se que essas técnicas, quando utilizadas de forma isolada, não são capazes de fornecer uma resposta adequada para o tomador de decisão, por demandarem muitas simplificações, no caso da otimização, ou por exigirem um exaustivo trabalho de análise, no caso da simulação. O objetivo desse trabalho é propor um método de combinação sequencial das técnicas de Simulação e Otimização de Sistemas com horizontes rolantes de planejamento, a fim de integrar as respostas fornecidas por ambas as técnicas e fornecer um resultado mais adequado para o tomador de decisão. Como resultado, obteve-se sucesso ao aliar o caráter das características dinâmicas e estocásticas de um modelo de simulação, mais aderente aos sistemas reais; ao dimensionamento ideal fornecido pelo modelo de otimização, inseridos em um ambiente de horizontes rolantes. A combinação das técnicas foi analisada por meio de três cenários com variações na demanda de 10 a 30%. Em comparação com a abordagem de otimização pura, destacam-se o aumento da quantidade de viagens esporádicas e de maior custo necessárias para suprir a imprevisibilidade das solicitações de transporte e o custo relativo da não consideração da simulação na decisão – que aumenta os custos finais do dimensionamento da frota em até 30%. Dessa forma, o embarcador pode reavaliar periodicamente o dimensionamento de sua frota, proporcionando um processo de tomada de decisão com mais segurança e melhor uso dos ativos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)N/DporUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Engenharia de Produção - PPGEP-SoUFSCarSimulaçãoOtimizaçãoHorizontes RolantesPesquisa OperacionalComposição de frotaENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONALProblema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantesFleet composition problem: a sequential simulation-optimization approach with rolling horizonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6 meses após a data da defesa600600a7369290-29d7-4fb0-b8a9-724846ed74dainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Luis Filipe.pdfDissertação Luis Filipe.pdfTexto completoapplication/pdf5515879https://repositorio.ufscar.br/bitstreams/f0ed5d5a-7be4-4fd3-8d5f-89de8c9e38a8/download7980684c9a40de1f4d4a8d0880eebd82MD51trueAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdfCarta Comprovante dissertação Luis Filipe.pdfCarta comprovante da versão final de teses e dissertaçõesapplication/pdf287064https://repositorio.ufscar.br/bitstreams/59c233a5-77e3-45f9-9943-6ea70ff4e7db/download20726d155606424ae9ecfa805ea854f6MD53falseAnonymousREAD2019-10-11LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/ed614cfa-296a-4d54-90f9-1bc853a7caf1/downloadae0398b6f8b235e40ad82cba6c50031dMD54falseAnonymousREAD2019-10-11TEXTDissertação Luis Filipe.pdf.txtDissertação Luis Filipe.pdf.txtExtracted texttext/plain229145https://repositorio.ufscar.br/bitstreams/f234efd8-7de4-4206-a879-fa00086fb8a2/download0e1aeb623fa79880805dbbe581697cf6MD59falseAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdf.txtCarta Comprovante dissertação Luis Filipe.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/75ba674a-d6c9-4db6-8d36-d257a12aea21/download68b329da9893e34099c7d8ad5cb9c940MD511falseAnonymousREAD2019-10-11THUMBNAILDissertação Luis Filipe.pdf.jpgDissertação Luis Filipe.pdf.jpgIM Thumbnailimage/jpeg3632https://repositorio.ufscar.br/bitstreams/85d30c5c-eaa7-4d9f-b8de-89c2e1ede1d5/download3cb1f7df35af52f0fc693dcf830e9200MD510falseAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdf.jpgCarta Comprovante dissertação Luis Filipe.pdf.jpgIM Thumbnailimage/jpeg12999https://repositorio.ufscar.br/bitstreams/587de1a9-add5-4eea-b89c-248294dfac4d/download04e24e1125d20c4c5670b4247dc359a0MD512falseAnonymousREAD2019-10-1120.500.14289/114432025-02-05 18:12:13.019Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11443https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:12:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
dc.title.por.fl_str_mv |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
dc.title.alternative.por.fl_str_mv |
Fleet composition problem: a sequential simulation-optimization approach with rolling horizons |
title |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
spellingShingle |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes Figueira de Faria, Luis Filipe Simulação Otimização Horizontes Rolantes Pesquisa Operacional Composição de frota ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
title_short |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
title_full |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
title_fullStr |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
title_full_unstemmed |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
title_sort |
Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes |
author |
Figueira de Faria, Luis Filipe |
author_facet |
Figueira de Faria, Luis Filipe |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/5110053347970711 |
dc.contributor.author.fl_str_mv |
Figueira de Faria, Luis Filipe |
dc.contributor.advisor1.fl_str_mv |
Silva, João Eduardo Azevedo Ramos da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3823047207711289 |
dc.contributor.authorID.fl_str_mv |
52d9d1cf-33b6-4721-bcc1-75e3261a825e |
contributor_str_mv |
Silva, João Eduardo Azevedo Ramos da |
dc.subject.por.fl_str_mv |
Simulação Otimização Horizontes Rolantes Pesquisa Operacional Composição de frota |
topic |
Simulação Otimização Horizontes Rolantes Pesquisa Operacional Composição de frota ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL |
description |
To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-05-31T14:09:57Z |
dc.date.available.fl_str_mv |
2019-05-31T14:09:57Z |
dc.date.issued.fl_str_mv |
2019-03-19 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/11443 |
identifier_str_mv |
FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443. |
url |
https://repositorio.ufscar.br/handle/20.500.14289/11443 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
a7369290-29d7-4fb0-b8a9-724846ed74da |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus Sorocaba |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia de Produção - PPGEP-So |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus Sorocaba |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/f0ed5d5a-7be4-4fd3-8d5f-89de8c9e38a8/download https://repositorio.ufscar.br/bitstreams/59c233a5-77e3-45f9-9943-6ea70ff4e7db/download https://repositorio.ufscar.br/bitstreams/ed614cfa-296a-4d54-90f9-1bc853a7caf1/download https://repositorio.ufscar.br/bitstreams/f234efd8-7de4-4206-a879-fa00086fb8a2/download https://repositorio.ufscar.br/bitstreams/75ba674a-d6c9-4db6-8d36-d257a12aea21/download https://repositorio.ufscar.br/bitstreams/85d30c5c-eaa7-4d9f-b8de-89c2e1ede1d5/download https://repositorio.ufscar.br/bitstreams/587de1a9-add5-4eea-b89c-248294dfac4d/download |
bitstream.checksum.fl_str_mv |
7980684c9a40de1f4d4a8d0880eebd82 20726d155606424ae9ecfa805ea854f6 ae0398b6f8b235e40ad82cba6c50031d 0e1aeb623fa79880805dbbe581697cf6 68b329da9893e34099c7d8ad5cb9c940 3cb1f7df35af52f0fc693dcf830e9200 04e24e1125d20c4c5670b4247dc359a0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
_version_ |
1834468995617521664 |