Export Ready — 

Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes

Bibliographic Details
Main Author: Figueira de Faria, Luis Filipe
Publication Date: 2019
Format: Master thesis
Language: por
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/11443
Summary: To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources.
id SCAR_a8ce81a8f54a7c3971b6eade6c9c2ff1
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/11443
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Figueira de Faria, Luis FilipeSilva, João Eduardo Azevedo Ramos dahttp://lattes.cnpq.br/3823047207711289http://lattes.cnpq.br/511005334797071152d9d1cf-33b6-4721-bcc1-75e3261a825e2019-05-31T14:09:57Z2019-05-31T14:09:57Z2019-03-19FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443.https://repositorio.ufscar.br/handle/20.500.14289/11443To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources.Para a distribuição física de produtos acabados, os embarcadores podem contratar empresas transportadoras para atender à demanda prevista pelos clientes. Entretanto, o contrato celebrado entre embarcadores e transportadores possui decisões conjuntas que devem ser tomadas em diversos horizontes de planejamento: estratégico, tático e operacional. Essa questão, conhecida como problema de dimensionamento ou composição de frota, possui diversas abordagens tradicionais reportadas na literatura, dividindo-se principalmente entre duas técnicas da Pesquisa Operacional: Simulação e Otimização de Sistemas. Contudo, sabe-se que essas técnicas, quando utilizadas de forma isolada, não são capazes de fornecer uma resposta adequada para o tomador de decisão, por demandarem muitas simplificações, no caso da otimização, ou por exigirem um exaustivo trabalho de análise, no caso da simulação. O objetivo desse trabalho é propor um método de combinação sequencial das técnicas de Simulação e Otimização de Sistemas com horizontes rolantes de planejamento, a fim de integrar as respostas fornecidas por ambas as técnicas e fornecer um resultado mais adequado para o tomador de decisão. Como resultado, obteve-se sucesso ao aliar o caráter das características dinâmicas e estocásticas de um modelo de simulação, mais aderente aos sistemas reais; ao dimensionamento ideal fornecido pelo modelo de otimização, inseridos em um ambiente de horizontes rolantes. A combinação das técnicas foi analisada por meio de três cenários com variações na demanda de 10 a 30%. Em comparação com a abordagem de otimização pura, destacam-se o aumento da quantidade de viagens esporádicas e de maior custo necessárias para suprir a imprevisibilidade das solicitações de transporte e o custo relativo da não consideração da simulação na decisão – que aumenta os custos finais do dimensionamento da frota em até 30%. Dessa forma, o embarcador pode reavaliar periodicamente o dimensionamento de sua frota, proporcionando um processo de tomada de decisão com mais segurança e melhor uso dos ativos.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)N/DporUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Engenharia de Produção - PPGEP-SoUFSCarSimulaçãoOtimizaçãoHorizontes RolantesPesquisa OperacionalComposição de frotaENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONALProblema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantesFleet composition problem: a sequential simulation-optimization approach with rolling horizonsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6 meses após a data da defesa600600a7369290-29d7-4fb0-b8a9-724846ed74dainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação Luis Filipe.pdfDissertação Luis Filipe.pdfTexto completoapplication/pdf5515879https://repositorio.ufscar.br/bitstreams/f0ed5d5a-7be4-4fd3-8d5f-89de8c9e38a8/download7980684c9a40de1f4d4a8d0880eebd82MD51trueAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdfCarta Comprovante dissertação Luis Filipe.pdfCarta comprovante da versão final de teses e dissertaçõesapplication/pdf287064https://repositorio.ufscar.br/bitstreams/59c233a5-77e3-45f9-9943-6ea70ff4e7db/download20726d155606424ae9ecfa805ea854f6MD53falseAnonymousREAD2019-10-11LICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/ed614cfa-296a-4d54-90f9-1bc853a7caf1/downloadae0398b6f8b235e40ad82cba6c50031dMD54falseAnonymousREAD2019-10-11TEXTDissertação Luis Filipe.pdf.txtDissertação Luis Filipe.pdf.txtExtracted texttext/plain229145https://repositorio.ufscar.br/bitstreams/f234efd8-7de4-4206-a879-fa00086fb8a2/download0e1aeb623fa79880805dbbe581697cf6MD59falseAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdf.txtCarta Comprovante dissertação Luis Filipe.pdf.txtExtracted texttext/plain1https://repositorio.ufscar.br/bitstreams/75ba674a-d6c9-4db6-8d36-d257a12aea21/download68b329da9893e34099c7d8ad5cb9c940MD511falseAnonymousREAD2019-10-11THUMBNAILDissertação Luis Filipe.pdf.jpgDissertação Luis Filipe.pdf.jpgIM Thumbnailimage/jpeg3632https://repositorio.ufscar.br/bitstreams/85d30c5c-eaa7-4d9f-b8de-89c2e1ede1d5/download3cb1f7df35af52f0fc693dcf830e9200MD510falseAnonymousREAD2019-10-11Carta Comprovante dissertação Luis Filipe.pdf.jpgCarta Comprovante dissertação Luis Filipe.pdf.jpgIM Thumbnailimage/jpeg12999https://repositorio.ufscar.br/bitstreams/587de1a9-add5-4eea-b89c-248294dfac4d/download04e24e1125d20c4c5670b4247dc359a0MD512falseAnonymousREAD2019-10-1120.500.14289/114432025-02-05 18:12:13.019Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11443https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:12:13Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.por.fl_str_mv Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
dc.title.alternative.por.fl_str_mv Fleet composition problem: a sequential simulation-optimization approach with rolling horizons
title Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
spellingShingle Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
Figueira de Faria, Luis Filipe
Simulação
Otimização
Horizontes Rolantes
Pesquisa Operacional
Composição de frota
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
title_short Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
title_full Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
title_fullStr Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
title_full_unstemmed Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
title_sort Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes
author Figueira de Faria, Luis Filipe
author_facet Figueira de Faria, Luis Filipe
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/5110053347970711
dc.contributor.author.fl_str_mv Figueira de Faria, Luis Filipe
dc.contributor.advisor1.fl_str_mv Silva, João Eduardo Azevedo Ramos da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3823047207711289
dc.contributor.authorID.fl_str_mv 52d9d1cf-33b6-4721-bcc1-75e3261a825e
contributor_str_mv Silva, João Eduardo Azevedo Ramos da
dc.subject.por.fl_str_mv Simulação
Otimização
Horizontes Rolantes
Pesquisa Operacional
Composição de frota
topic Simulação
Otimização
Horizontes Rolantes
Pesquisa Operacional
Composição de frota
ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA DE PRODUCAO::PESQUISA OPERACIONAL
description To physically distribute finished goods, shippers can hire third-party logistics (3PL) in order to meet the forecasted demand by the customers. Nevertheless, the contract made between shippers and 3PL is based on decisions that need to be considered over several time horizons: strategic, tactical and operational. This question, known as fleet dimensioning or fleet composition problem, has been vastly approached in literature, divided mainly into two Operational Research’s techniques: Systems Simulation and Optimization. However, it is known that these techniques when applied in a pure or isolated form are not capable of delivering the adequate solution for the problem, once they need several simplifications, in the case of Optimization, or require an exhaustive analysis process, in the case of Simulation. The aim of this study is to propose a sequential simulation-optimization method with rolling horizons to integrate the solutions given by both techniques and provide a much more adequate result for the decision maker. As result, the more realistic dynamical and stochastic characteristics of the simulation model and the optimized fleet provided by the optimization model are successfully united in a rolling horizon environment. This combination has been analyzed over three different scenarios of demand variation, from 10 to 30%. When comparing to the isolated optimization, it can be highlighted the quantity of SPOT vehicles needed to overcome the unpredictability of transport solicitations and the relative costs of not considering simulation on decision making, which can increase the final costs of dimensioning implementation by up to 30%. Therefore, it becomes possible for the shipper to periodically re-evaluate his fleet dimensioning, providing a much safer decision-making process and a much better use of resources.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-05-31T14:09:57Z
dc.date.available.fl_str_mv 2019-05-31T14:09:57Z
dc.date.issued.fl_str_mv 2019-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/11443
identifier_str_mv FIGUEIRA DE FARIA, Luis Filipe. Problema de composição de frota: uma abordagem sequencial de simulação-otimização com horizontes rolantes. 2019. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal de São Carlos, Sorocaba, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11443.
url https://repositorio.ufscar.br/handle/20.500.14289/11443
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a7369290-29d7-4fb0-b8a9-724846ed74da
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia de Produção - PPGEP-So
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/f0ed5d5a-7be4-4fd3-8d5f-89de8c9e38a8/download
https://repositorio.ufscar.br/bitstreams/59c233a5-77e3-45f9-9943-6ea70ff4e7db/download
https://repositorio.ufscar.br/bitstreams/ed614cfa-296a-4d54-90f9-1bc853a7caf1/download
https://repositorio.ufscar.br/bitstreams/f234efd8-7de4-4206-a879-fa00086fb8a2/download
https://repositorio.ufscar.br/bitstreams/75ba674a-d6c9-4db6-8d36-d257a12aea21/download
https://repositorio.ufscar.br/bitstreams/85d30c5c-eaa7-4d9f-b8de-89c2e1ede1d5/download
https://repositorio.ufscar.br/bitstreams/587de1a9-add5-4eea-b89c-248294dfac4d/download
bitstream.checksum.fl_str_mv 7980684c9a40de1f4d4a8d0880eebd82
20726d155606424ae9ecfa805ea854f6
ae0398b6f8b235e40ad82cba6c50031d
0e1aeb623fa79880805dbbe581697cf6
68b329da9893e34099c7d8ad5cb9c940
3cb1f7df35af52f0fc693dcf830e9200
04e24e1125d20c4c5670b4247dc359a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834468995617521664