Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks

Bibliographic Details
Main Author: Santos, Claudio Filipi Gonçalves dos
Publication Date: 2022
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/16345
Summary: Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems.
id SCAR_7af27e577e457f13da9036ddc26db9a7
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/16345
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Santos, Claudio Filipi Gonçalves dosPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/30569311431686194cac6dfe-6417-436d-ab7e-31b4687cb6ca2022-07-04T13:52:18Z2022-07-04T13:52:18Z2022-06-22SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345.https://repositorio.ufscar.br/handle/20.500.14289/16345Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems.Aprendizagem Profundo alcançou resultados estado-da-arte em vários domínios, como processamento de imagem, processamento de linguagem natural e processamento de áudio. Para alcançar tais resultados, usa-se redes neurais com várias camadas de processamento juntamente com uma enorme quantidade de informações rotuladas. Uma família particular de Aprendizagem Profundo são as Redes Neurais Convolucionais (do inglês, Convolutional Neural Networks, CNNs), que funcionam utilizando camadas convolucionais derivadas da área de processamento digital de sinais, sendo muito úteis para detectar características relevantes em dados não estruturados, como áudio e imagens. Uma forma de melhorar os resultados nas CNNs é o uso de algoritmos de regularização, que visam dificultar o processo de treinamento, mas geram modelos que generalizam melhor para inferência quando usados ​​em aplicações. O presente trabalho contribui na área de métodos de regularização para CNNs, propondo mais métodos para uso em diferentes tarefas de processamento de imagens. Esta tese apresenta uma coletânea de trabalhos desenvolvidos pelo autor durante o período de pesquisa, que foram publicados ou submetidos até a atualidade, apresentando: (i) um levantamento, listando trabalhos recentes de regularização e destacando as soluções e problemas da área; (ii) um método de queda de neurônios para uso nos tensores gerados durante o treinamento das CNNs; (iii) uma variação do método mencionado, alterando as regras de descarte, visando diferentes características do tensor; e (iv) um algoritmo de regularização de rótulos utilizado em diferentes problemas de processamento de imagens.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes Neurais ConvolucionaisRegularizaçãoConvolutional Neural NetworksRegularizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAvoiding overfiting: new algorithms to improve generalisation in convolutional neural networksNovos algoritmos de regularização para redes neurais convolucionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/129c2a97-6cf3-4ea0-80bb-bbac241b659b/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREADORIGINALmodeloABNT2.pdfmodeloABNT2.pdfTeseapplication/pdf9531630https://repositorio.ufscar.br/bitstreams/56e06f9b-8378-4b34-a01d-835f993f4bc6/download222b68bdb4e8d1a0e5d5d486de9c413fMD51trueAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdfPPGCC_Template_dec_BCO_tese_claudio (1).pdfCarta Comprovanteapplication/pdf91552https://repositorio.ufscar.br/bitstreams/76750659-94fd-43d4-823f-c7afdd166399/downloadde9267336db48157e1e53315db406db6MD53falseTEXTmodeloABNT2.pdf.txtmodeloABNT2.pdf.txtExtracted texttext/plain194747https://repositorio.ufscar.br/bitstreams/e654dc6d-7bc7-4a88-be47-bd398fd672b2/download48be53ba5f4a18c4a50ca2da77799f17MD55falseAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdf.txtPPGCC_Template_dec_BCO_tese_claudio (1).pdf.txtExtracted texttext/plain1596https://repositorio.ufscar.br/bitstreams/46b9fefd-e74b-4713-812a-32223f28e20b/download52caa3deba7ce0b25aa1abe0f182020dMD57falseTHUMBNAILmodeloABNT2.pdf.jpgmodeloABNT2.pdf.jpgIM Thumbnailimage/jpeg6993https://repositorio.ufscar.br/bitstreams/1f03a985-e34b-4b6b-b9f6-7e5483a9e1f6/download75dd33aa1977aa5c56f409b7d642ba71MD56falseAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdf.jpgPPGCC_Template_dec_BCO_tese_claudio (1).pdf.jpgIM Thumbnailimage/jpeg14908https://repositorio.ufscar.br/bitstreams/93973f96-48e2-488f-b435-109fd4b29e8a/download6469b0a4dbcc8e60619214cb803f5018MD58false20.500.14289/163452025-02-05 21:34:26.397http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/16345https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T00:34:26Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.eng.fl_str_mv Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
dc.title.alternative.por.fl_str_mv Novos algoritmos de regularização para redes neurais convolucionais
title Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
spellingShingle Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
Santos, Claudio Filipi Gonçalves dos
Redes Neurais Convolucionais
Regularização
Convolutional Neural Networks
Regularization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
title_full Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
title_fullStr Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
title_full_unstemmed Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
title_sort Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
author Santos, Claudio Filipi Gonçalves dos
author_facet Santos, Claudio Filipi Gonçalves dos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/3056931143168619
dc.contributor.author.fl_str_mv Santos, Claudio Filipi Gonçalves dos
dc.contributor.advisor1.fl_str_mv Papa, João Paulo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9039182932747194
dc.contributor.authorID.fl_str_mv 4cac6dfe-6417-436d-ab7e-31b4687cb6ca
contributor_str_mv Papa, João Paulo
dc.subject.por.fl_str_mv Redes Neurais Convolucionais
Regularização
topic Redes Neurais Convolucionais
Regularização
Convolutional Neural Networks
Regularization
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Convolutional Neural Networks
Regularization
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-04T13:52:18Z
dc.date.available.fl_str_mv 2022-07-04T13:52:18Z
dc.date.issued.fl_str_mv 2022-06-22
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/16345
identifier_str_mv SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345.
url https://repositorio.ufscar.br/handle/20.500.14289/16345
dc.language.iso.fl_str_mv eng
language eng
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência da Computação - PPGCC
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/129c2a97-6cf3-4ea0-80bb-bbac241b659b/download
https://repositorio.ufscar.br/bitstreams/56e06f9b-8378-4b34-a01d-835f993f4bc6/download
https://repositorio.ufscar.br/bitstreams/76750659-94fd-43d4-823f-c7afdd166399/download
https://repositorio.ufscar.br/bitstreams/e654dc6d-7bc7-4a88-be47-bd398fd672b2/download
https://repositorio.ufscar.br/bitstreams/46b9fefd-e74b-4713-812a-32223f28e20b/download
https://repositorio.ufscar.br/bitstreams/1f03a985-e34b-4b6b-b9f6-7e5483a9e1f6/download
https://repositorio.ufscar.br/bitstreams/93973f96-48e2-488f-b435-109fd4b29e8a/download
bitstream.checksum.fl_str_mv e39d27027a6cc9cb039ad269a5db8e34
222b68bdb4e8d1a0e5d5d486de9c413f
de9267336db48157e1e53315db406db6
48be53ba5f4a18c4a50ca2da77799f17
52caa3deba7ce0b25aa1abe0f182020d
75dd33aa1977aa5c56f409b7d642ba71
6469b0a4dbcc8e60619214cb803f5018
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469044171833344