Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks
Main Author: | |
---|---|
Publication Date: | 2022 |
Format: | Doctoral thesis |
Language: | eng |
Source: | Repositório Institucional da UFSCAR |
Download full: | https://repositorio.ufscar.br/handle/20.500.14289/16345 |
Summary: | Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems. |
id |
SCAR_7af27e577e457f13da9036ddc26db9a7 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/16345 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Santos, Claudio Filipi Gonçalves dosPapa, João Paulohttp://lattes.cnpq.br/9039182932747194http://lattes.cnpq.br/30569311431686194cac6dfe-6417-436d-ab7e-31b4687cb6ca2022-07-04T13:52:18Z2022-07-04T13:52:18Z2022-06-22SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345.https://repositorio.ufscar.br/handle/20.500.14289/16345Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems.Aprendizagem Profundo alcançou resultados estado-da-arte em vários domínios, como processamento de imagem, processamento de linguagem natural e processamento de áudio. Para alcançar tais resultados, usa-se redes neurais com várias camadas de processamento juntamente com uma enorme quantidade de informações rotuladas. Uma família particular de Aprendizagem Profundo são as Redes Neurais Convolucionais (do inglês, Convolutional Neural Networks, CNNs), que funcionam utilizando camadas convolucionais derivadas da área de processamento digital de sinais, sendo muito úteis para detectar características relevantes em dados não estruturados, como áudio e imagens. Uma forma de melhorar os resultados nas CNNs é o uso de algoritmos de regularização, que visam dificultar o processo de treinamento, mas geram modelos que generalizam melhor para inferência quando usados em aplicações. O presente trabalho contribui na área de métodos de regularização para CNNs, propondo mais métodos para uso em diferentes tarefas de processamento de imagens. Esta tese apresenta uma coletânea de trabalhos desenvolvidos pelo autor durante o período de pesquisa, que foram publicados ou submetidos até a atualidade, apresentando: (i) um levantamento, listando trabalhos recentes de regularização e destacando as soluções e problemas da área; (ii) um método de queda de neurônios para uso nos tensores gerados durante o treinamento das CNNs; (iii) uma variação do método mencionado, alterando as regras de descarte, visando diferentes características do tensor; e (iv) um algoritmo de regularização de rótulos utilizado em diferentes problemas de processamento de imagens.Não recebi financiamentoengUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessRedes Neurais ConvolucionaisRegularizaçãoConvolutional Neural NetworksRegularizationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAvoiding overfiting: new algorithms to improve generalisation in convolutional neural networksNovos algoritmos de regularização para redes neurais convolucionaisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis600600a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fdreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/129c2a97-6cf3-4ea0-80bb-bbac241b659b/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREADORIGINALmodeloABNT2.pdfmodeloABNT2.pdfTeseapplication/pdf9531630https://repositorio.ufscar.br/bitstreams/56e06f9b-8378-4b34-a01d-835f993f4bc6/download222b68bdb4e8d1a0e5d5d486de9c413fMD51trueAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdfPPGCC_Template_dec_BCO_tese_claudio (1).pdfCarta Comprovanteapplication/pdf91552https://repositorio.ufscar.br/bitstreams/76750659-94fd-43d4-823f-c7afdd166399/downloadde9267336db48157e1e53315db406db6MD53falseTEXTmodeloABNT2.pdf.txtmodeloABNT2.pdf.txtExtracted texttext/plain194747https://repositorio.ufscar.br/bitstreams/e654dc6d-7bc7-4a88-be47-bd398fd672b2/download48be53ba5f4a18c4a50ca2da77799f17MD55falseAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdf.txtPPGCC_Template_dec_BCO_tese_claudio (1).pdf.txtExtracted texttext/plain1596https://repositorio.ufscar.br/bitstreams/46b9fefd-e74b-4713-812a-32223f28e20b/download52caa3deba7ce0b25aa1abe0f182020dMD57falseTHUMBNAILmodeloABNT2.pdf.jpgmodeloABNT2.pdf.jpgIM Thumbnailimage/jpeg6993https://repositorio.ufscar.br/bitstreams/1f03a985-e34b-4b6b-b9f6-7e5483a9e1f6/download75dd33aa1977aa5c56f409b7d642ba71MD56falseAnonymousREADPPGCC_Template_dec_BCO_tese_claudio (1).pdf.jpgPPGCC_Template_dec_BCO_tese_claudio (1).pdf.jpgIM Thumbnailimage/jpeg14908https://repositorio.ufscar.br/bitstreams/93973f96-48e2-488f-b435-109fd4b29e8a/download6469b0a4dbcc8e60619214cb803f5018MD58false20.500.14289/163452025-02-05 21:34:26.397http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/16345https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-06T00:34:26Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.eng.fl_str_mv |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
dc.title.alternative.por.fl_str_mv |
Novos algoritmos de regularização para redes neurais convolucionais |
title |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
spellingShingle |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks Santos, Claudio Filipi Gonçalves dos Redes Neurais Convolucionais Regularização Convolutional Neural Networks Regularization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
title_full |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
title_fullStr |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
title_full_unstemmed |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
title_sort |
Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks |
author |
Santos, Claudio Filipi Gonçalves dos |
author_facet |
Santos, Claudio Filipi Gonçalves dos |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/3056931143168619 |
dc.contributor.author.fl_str_mv |
Santos, Claudio Filipi Gonçalves dos |
dc.contributor.advisor1.fl_str_mv |
Papa, João Paulo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9039182932747194 |
dc.contributor.authorID.fl_str_mv |
4cac6dfe-6417-436d-ab7e-31b4687cb6ca |
contributor_str_mv |
Papa, João Paulo |
dc.subject.por.fl_str_mv |
Redes Neurais Convolucionais Regularização |
topic |
Redes Neurais Convolucionais Regularização Convolutional Neural Networks Regularization CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Convolutional Neural Networks Regularization |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Deep Learning has achieved state-of-the-art results in several domains, such as image processing, natural language processing, and audio processing. To accomplish such results, it uses neural networks with several processing layers along with a massive amount of labeled information. One particular family of Deep Learning is the Convolutional Neural Networks (CNNs), which works using convolutional layers derived from the digital signal processing area, being very helpfull to detect relevant features in unstructured data, such as audio and pictures. One way to improve results on CNN is to use regularization algorithms, which aim to make the training process harder but generate models that generalize better for inference when use in applications. The present work contributes in the area of regularization methods for CNNs, proposing more methods for using in different image processing tasks. This thesis presents a collection of works developed by the author during the research period, which were published or submited until present time, presenting: (i) a survey, listing recent regularization works and highlighting the solutions and problems of the area; (ii) a neuron droping method to use in the tensors generated during CNNs training; (iii) a variation of the mentioned method, changing the droping rules, targeting different features of the tensor; and (iv) a label regularization algorithm used in different image processing problems. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-04T13:52:18Z |
dc.date.available.fl_str_mv |
2022-07-04T13:52:18Z |
dc.date.issued.fl_str_mv |
2022-06-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/16345 |
identifier_str_mv |
SANTOS, Claudio Filipi Gonçalves dos. Avoiding overfiting: new algorithms to improve generalisation in convolutional neural networks. 2022. Tese (Doutorado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2022. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/16345. |
url |
https://repositorio.ufscar.br/handle/20.500.14289/16345 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
a26a6b97-f6e5-4bd7-9c5a-876ad8cf02fd |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/129c2a97-6cf3-4ea0-80bb-bbac241b659b/download https://repositorio.ufscar.br/bitstreams/56e06f9b-8378-4b34-a01d-835f993f4bc6/download https://repositorio.ufscar.br/bitstreams/76750659-94fd-43d4-823f-c7afdd166399/download https://repositorio.ufscar.br/bitstreams/e654dc6d-7bc7-4a88-be47-bd398fd672b2/download https://repositorio.ufscar.br/bitstreams/46b9fefd-e74b-4713-812a-32223f28e20b/download https://repositorio.ufscar.br/bitstreams/1f03a985-e34b-4b6b-b9f6-7e5483a9e1f6/download https://repositorio.ufscar.br/bitstreams/93973f96-48e2-488f-b435-109fd4b29e8a/download |
bitstream.checksum.fl_str_mv |
e39d27027a6cc9cb039ad269a5db8e34 222b68bdb4e8d1a0e5d5d486de9c413f de9267336db48157e1e53315db406db6 48be53ba5f4a18c4a50ca2da77799f17 52caa3deba7ce0b25aa1abe0f182020d 75dd33aa1977aa5c56f409b7d642ba71 6469b0a4dbcc8e60619214cb803f5018 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
_version_ |
1834469044171833344 |