Geração de vetores de sentido para o português
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | por |
Source: | Repositório Institucional da UFSCAR |
Download full: | https://repositorio.ufscar.br/handle/20.500.14289/11792 |
Summary: | Numerical vector representations are able to represent from words to meanings, in a low-dimensional continuous space. These representations are based on distributional modeling, where the context in which the word occurs is taken into account for vector generation. The word representations, known as word embeddings or word vectors (Word2vec, FastText, Wang2vec and Glove), which have been widely used until now, have an important limitation: they produce a single vector representation for each word, ignoring the fact that ambiguous words can represent different meanings (different contexts). This mixture of meanings can be a problem for many applications. For example, in a language comprehension task, using the vector of an ambiguous word as "bank", all possible meanings --such as financial institution, blood bank, or furniture item --will be mixed into a single numerical vector, causing an erroneous semantic interpretation of the sentence in which it occurs. Over the last few years, representations of meanings, known as sense embeddings or sense vectors, have proven to be able to model syntactic and semantic knowledge and have been used in NLP applications. By being able to transform the various meanings of an ambiguous word into numerical vectors, sense vectors can be applied to Word Sense Disambiguation (WSD). Thus, this work generated and evaluated sense vectors for Portuguese (PT-BR and PT-EU), and showed that they overcome traditional vectors in intrinsic and extrinsic NLP tasks, since they are capable of dealing with lexical ambiguity. To the best of our knowledge, this is the first work to address the geneation and evaluation of sense vectors for Portuguese. |
id |
SCAR_5c83ea9828c53b27d724b8a907ec2a30 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/11792 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Silva, Jéssica Rodrigues daCaseli, Helena de Medeiroshttp://lattes.cnpq.br/6608582057810385http://lattes.cnpq.br/8077169220013752a98b2fa2-5521-403c-bfc2-f5fae6db5c2c2019-09-06T19:06:09Z2019-09-06T19:06:09Z2019-07-03SILVA, Jéssica Rodrigues da. Geração de vetores de sentido para o português. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11792.https://repositorio.ufscar.br/handle/20.500.14289/11792Numerical vector representations are able to represent from words to meanings, in a low-dimensional continuous space. These representations are based on distributional modeling, where the context in which the word occurs is taken into account for vector generation. The word representations, known as word embeddings or word vectors (Word2vec, FastText, Wang2vec and Glove), which have been widely used until now, have an important limitation: they produce a single vector representation for each word, ignoring the fact that ambiguous words can represent different meanings (different contexts). This mixture of meanings can be a problem for many applications. For example, in a language comprehension task, using the vector of an ambiguous word as "bank", all possible meanings --such as financial institution, blood bank, or furniture item --will be mixed into a single numerical vector, causing an erroneous semantic interpretation of the sentence in which it occurs. Over the last few years, representations of meanings, known as sense embeddings or sense vectors, have proven to be able to model syntactic and semantic knowledge and have been used in NLP applications. By being able to transform the various meanings of an ambiguous word into numerical vectors, sense vectors can be applied to Word Sense Disambiguation (WSD). Thus, this work generated and evaluated sense vectors for Portuguese (PT-BR and PT-EU), and showed that they overcome traditional vectors in intrinsic and extrinsic NLP tasks, since they are capable of dealing with lexical ambiguity. To the best of our knowledge, this is the first work to address the geneation and evaluation of sense vectors for Portuguese.Representações vetoriais numéricas são capazes de representar desde palavras até significados, em espaços vetoriais contínuos de baixa dimensão. Essas representações utilizam a modelagem distribucional, onde o contexto em que a palavra ocorre é levado em consideração para a geração do vetor. As representações de palavras, mais conhecidas como word embeddings ou word vectors (Word2vec, FastText, Wang2vec e Glove), muito utilizadas até então, apresentam uma importante limitação: produzem uma única representação vetorial para cada palavra, ignorando o fato de que palavras ambíguas podem assumir significados diferentes (contextos diferentes). Essa combinação de significados pode ser um problema para várias aplicações. Por exemplo, em uma tarefa de compreensão de linguagem, usando o vetor de uma palavra ambígua como "banco", todos os possíveis significados -- como instituição financeira, banco de sangue ou um item de mobília -- serão misturados em um único vetor numérico, causando uma interpretação semântica errada da sentença na qual ocorre. Ao longo dos últimos anos, as representações de significados (sentidos), conhecidas como sense embeddings ou sense vectors mostraram ser capazes de modelar conhecimento sintático e semântico e passaram a ser utilizadas em aplicações de PLN. Por ser capaz de transformar os vários sentidos de uma palavra ambígua em vetores numéricos, notou-se o poder desse recurso em fazer Desambiguação Lexical de Sentidos (DLS). Esta pesquisa gerou e avaliou vetores de sentido para o português (PT-BR e PT-EU), e mostrou que eles superam os vetores tradicionais em tarefas intrínsecas e extrínsecas de PLN, já que são capazes de lidar com a ambiguidade lexical. Até onde sabemos, este é o primeiro trabalho a investigar a geração e a avaliação de vetores de sentido para o português.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CAPES: Código de Financiamento 001FAPESP: 2016/13002-0porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Ciência da Computação - PPGCCUFSCarVetores de sentidoDesambiguação lexical de sentidosVetores de palavraModelagem distribucionalSense embeddingsSense vectorsWord sense disambiguationWord embeddingsWord vectorsDistributional modelingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOGeração de vetores de sentido para o portuguêsGenerating sense embeddings for portugueseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisOnline600600e36d4e63-960d-4f5c-9c93-f8b7f5f93d65info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALRODRIGUES_jessica_2019.pdfRODRIGUES_jessica_2019.pdfapplication/pdf1894553https://repositorio.ufscar.br/bitstreams/507e1f18-99f8-4bd2-adfe-1b7ddfbeb7e7/download5f313c106a7db911fa42ca0d8087c6daMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81957https://repositorio.ufscar.br/bitstreams/74da2300-3855-4a14-a8dc-21fc3545855f/downloadae0398b6f8b235e40ad82cba6c50031dMD53falseAnonymousREADTEXTRODRIGUES_jessica_2019.pdf.txtRODRIGUES_jessica_2019.pdf.txtExtracted texttext/plain215837https://repositorio.ufscar.br/bitstreams/6f59ee4f-2d15-4093-9983-43a74f2451fd/download91a401d3b143c6990dedb87364f07985MD56falseAnonymousREADTHUMBNAILRODRIGUES_jessica_2019.pdf.jpgRODRIGUES_jessica_2019.pdf.jpgIM Thumbnailimage/jpeg8297https://repositorio.ufscar.br/bitstreams/6298d108-ae74-4e0a-a031-a2ffed1faf01/download19f180e8f06e57a0ba0ddeaf6815187dMD57falseAnonymousREAD20.500.14289/117922025-02-05 18:16:37.271Acesso abertoopen.accessoai:repositorio.ufscar.br:20.500.14289/11792https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T21:16:37Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU8OjbyBDYXJsb3MgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdQpkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlCmVtIHF1YWxxdWVyIG1laW8sIGluY2x1aW5kbyBvcyBmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIGEgVUZTQ2FyIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28KcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGU0NhciBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU0NhcgpvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRlNDYXIsClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNDYXIgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
dc.title.por.fl_str_mv |
Geração de vetores de sentido para o português |
dc.title.alternative.eng.fl_str_mv |
Generating sense embeddings for portuguese |
title |
Geração de vetores de sentido para o português |
spellingShingle |
Geração de vetores de sentido para o português Silva, Jéssica Rodrigues da Vetores de sentido Desambiguação lexical de sentidos Vetores de palavra Modelagem distribucional Sense embeddings Sense vectors Word sense disambiguation Word embeddings Word vectors Distributional modeling CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Geração de vetores de sentido para o português |
title_full |
Geração de vetores de sentido para o português |
title_fullStr |
Geração de vetores de sentido para o português |
title_full_unstemmed |
Geração de vetores de sentido para o português |
title_sort |
Geração de vetores de sentido para o português |
author |
Silva, Jéssica Rodrigues da |
author_facet |
Silva, Jéssica Rodrigues da |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8077169220013752 |
dc.contributor.author.fl_str_mv |
Silva, Jéssica Rodrigues da |
dc.contributor.advisor1.fl_str_mv |
Caseli, Helena de Medeiros |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6608582057810385 |
dc.contributor.authorID.fl_str_mv |
a98b2fa2-5521-403c-bfc2-f5fae6db5c2c |
contributor_str_mv |
Caseli, Helena de Medeiros |
dc.subject.por.fl_str_mv |
Vetores de sentido Desambiguação lexical de sentidos Vetores de palavra Modelagem distribucional |
topic |
Vetores de sentido Desambiguação lexical de sentidos Vetores de palavra Modelagem distribucional Sense embeddings Sense vectors Word sense disambiguation Word embeddings Word vectors Distributional modeling CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Sense embeddings Sense vectors Word sense disambiguation Word embeddings Word vectors Distributional modeling |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Numerical vector representations are able to represent from words to meanings, in a low-dimensional continuous space. These representations are based on distributional modeling, where the context in which the word occurs is taken into account for vector generation. The word representations, known as word embeddings or word vectors (Word2vec, FastText, Wang2vec and Glove), which have been widely used until now, have an important limitation: they produce a single vector representation for each word, ignoring the fact that ambiguous words can represent different meanings (different contexts). This mixture of meanings can be a problem for many applications. For example, in a language comprehension task, using the vector of an ambiguous word as "bank", all possible meanings --such as financial institution, blood bank, or furniture item --will be mixed into a single numerical vector, causing an erroneous semantic interpretation of the sentence in which it occurs. Over the last few years, representations of meanings, known as sense embeddings or sense vectors, have proven to be able to model syntactic and semantic knowledge and have been used in NLP applications. By being able to transform the various meanings of an ambiguous word into numerical vectors, sense vectors can be applied to Word Sense Disambiguation (WSD). Thus, this work generated and evaluated sense vectors for Portuguese (PT-BR and PT-EU), and showed that they overcome traditional vectors in intrinsic and extrinsic NLP tasks, since they are capable of dealing with lexical ambiguity. To the best of our knowledge, this is the first work to address the geneation and evaluation of sense vectors for Portuguese. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-09-06T19:06:09Z |
dc.date.available.fl_str_mv |
2019-09-06T19:06:09Z |
dc.date.issued.fl_str_mv |
2019-07-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Jéssica Rodrigues da. Geração de vetores de sentido para o português. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11792. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/11792 |
identifier_str_mv |
SILVA, Jéssica Rodrigues da. Geração de vetores de sentido para o português. 2019. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de São Carlos, São Carlos, 2019. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/11792. |
url |
https://repositorio.ufscar.br/handle/20.500.14289/11792 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
e36d4e63-960d-4f5c-9c93-f8b7f5f93d65 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciência da Computação - PPGCC |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/507e1f18-99f8-4bd2-adfe-1b7ddfbeb7e7/download https://repositorio.ufscar.br/bitstreams/74da2300-3855-4a14-a8dc-21fc3545855f/download https://repositorio.ufscar.br/bitstreams/6f59ee4f-2d15-4093-9983-43a74f2451fd/download https://repositorio.ufscar.br/bitstreams/6298d108-ae74-4e0a-a031-a2ffed1faf01/download |
bitstream.checksum.fl_str_mv |
5f313c106a7db911fa42ca0d8087c6da ae0398b6f8b235e40ad82cba6c50031d 91a401d3b143c6990dedb87364f07985 19f180e8f06e57a0ba0ddeaf6815187d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
_version_ |
1834468942222983168 |