Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto

Bibliographic Details
Main Author: Santos, Alan Lucas dos
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/14658
Summary: After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system.
id SCAR_53ccdcad7364e7737d7e323bcd8bbca2
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/14658
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Santos, Alan Lucas dosJesus Junior, Waldir Cintra dehttp://lattes.cnpq.br/2614953467362376http://lattes.cnpq.br/67771559193409709b495157-6118-46c2-8224-bb5ff456375f2021-07-23T16:50:05Z2021-07-23T16:50:05Z2021-06-24SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658.https://repositorio.ufscar.br/handle/20.500.14289/14658After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system.Após o crescimento da criação e armazenamento de dados, que são a matéria prima da inteligência artificial, nos últimos anos se nota que em quase toda indústria e setores da saúde já trabalham com softwares de inteligência artificial, os quais são utilizados principalmente no auxílio de automação, análises de fraude, diagnose de doenças humanas, marketing digital, carros autônomos, redes sociais, dentre outros. Porém, no setor agroflorestal, responsáveis por grande parte do PIB econômico brasileiro, são escassos os trabalhos, softwares e informações relacionados a inteligência artificial. Objetivou-se com o presente trabalho é criar um sistema com base em redes neurais artificiais (RNA) para detecção de doenças foliares do eucalipto, capaz de realizar o processamento digital da imagem mediante a utilização de técnicas de visão computacional e treinamento de uma rede neural com a arquitetura Perceptron multicamadas utilizando o algoritmo de treinamento Backpropagation, por meio da linguagem de programação Python. O presente trabalho foi desenvolvido com a coleta de folhas com manchas foliares de Mycosphaerella e ferrugem do eucalipto (Austropuccinia psidii), além de folhas sadias para a criação do dataset para treinamento da Rede Neural Artificial (RNA) perceptron multicamadas (MLP) com o algoritmo de backpropagation. As folhas foram digitalizadas e submetidas ao primeiro processo realizado pelo sistema especialista, transformando as imagens coloridas em tons de cinza, diminuindo de três dimensões de cores (RGB) para apenas uma dimensão, foi realizada a padronização da largura da folha e redimensionamento de sua altura sem a perda de proporção da imagem e por fim a binarização para extração apenas do objeto de interesse, gerando um histograma com as frequências de tons de cinza que foi utilizado como dado de entrada para a rede neural para treinamento e validação. Foram propostas oito topologias de Redes Neurais Artificiais contendo quatro topologias com uma camada oculta de neurônios e quatro topologias com a com duas camadas ocultas de neurônios. Todas as topologias obtiveram em média de 92% de acertos, sendo considerada a mais adequada à topologia com apenas uma camada com 86 neurônios pela média dos melhores resultados obtidos das métricas de acurácia, precisão, revogação e F1 Score acima dos 93% e o baixo esforço computacional para a diagnose da folha o que garante um melhor desempenho do Sistema especialista desenvolvido.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Planejamento e Uso de Recursos Renováveis - PPGPUR-SoUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEucalyptus spp.Manchas foliaresInteligência ArtificialPerceptron multicamadasRedes neuraisVisão computacionalleaf diseasesArtificial IntelligenceMultilayer PerceptronComputer visionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIAUso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucaliptoUse of Neural Network for Development of Expert System for Diagnosis of Foliar Diseases in Eucalyptusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600d554bb41-eb51-48a7-90de-4569e43fd2a3reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdfUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdfDissertaçãoapplication/pdf1500131https://repositorio.ufscar.br/bitstreams/ff24155d-11d6-4b1c-a2f1-005d08886ef2/download08b0978255d8353681a324c09e2dd8faMD51trueAnonymousREADcarta-comprovante.pdfcarta-comprovante.pdfCarta Comprovanteapplication/pdf144997https://repositorio.ufscar.br/bitstreams/fb788351-d2bf-4255-9c22-f8665ed329f1/download7936de58336d51bd5cb12ea656b54ab6MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/3c5e2977-5b4a-4f65-95d2-cd44dfa6980c/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.txtUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.txtExtracted texttext/plain105280https://repositorio.ufscar.br/bitstreams/b1052eab-9400-4146-b66c-d76dacb082b7/downloadd1b20013866ce6aefc9cb47e6a383a29MD58falseAnonymousREADcarta-comprovante.pdf.txtcarta-comprovante.pdf.txtExtracted texttext/plain1572https://repositorio.ufscar.br/bitstreams/5043a873-d71c-4d5c-8d75-32a1b12e6fcc/download2d6b9210a1989578839f487d07739eeeMD510falseAnonymousREADTHUMBNAILUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.jpgUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.jpgIM Thumbnailimage/jpeg3983https://repositorio.ufscar.br/bitstreams/f68c58c2-0dcd-459a-8ccc-e7432d73fd36/download65045a4f271ecd9519521ef094293136MD59falseAnonymousREADcarta-comprovante.pdf.jpgcarta-comprovante.pdf.jpgIM Thumbnailimage/jpeg11749https://repositorio.ufscar.br/bitstreams/a0ab2cda-e2ad-43c4-a489-19a31bea3ba6/download9675ac5ae96afbea7da5cab5e170919fMD511falseAnonymousREAD20.500.14289/146582025-02-05 20:00:07.428http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14658https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:00:07Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
dc.title.alternative.por.fl_str_mv Use of Neural Network for Development of Expert System for Diagnosis of Foliar Diseases in Eucalyptus
title Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
spellingShingle Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
Santos, Alan Lucas dos
Eucalyptus spp.
Manchas foliares
Inteligência Artificial
Perceptron multicamadas
Redes neurais
Visão computacional
leaf diseases
Artificial Intelligence
Multilayer Perceptron
Computer vision
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA
title_short Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
title_full Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
title_fullStr Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
title_full_unstemmed Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
title_sort Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
author Santos, Alan Lucas dos
author_facet Santos, Alan Lucas dos
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/6777155919340970
dc.contributor.author.fl_str_mv Santos, Alan Lucas dos
dc.contributor.advisor1.fl_str_mv Jesus Junior, Waldir Cintra de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2614953467362376
dc.contributor.authorID.fl_str_mv 9b495157-6118-46c2-8224-bb5ff456375f
contributor_str_mv Jesus Junior, Waldir Cintra de
dc.subject.por.fl_str_mv Eucalyptus spp.
Manchas foliares
Inteligência Artificial
Perceptron multicamadas
Redes neurais
Visão computacional
leaf diseases
Artificial Intelligence
Multilayer Perceptron
Computer vision
topic Eucalyptus spp.
Manchas foliares
Inteligência Artificial
Perceptron multicamadas
Redes neurais
Visão computacional
leaf diseases
Artificial Intelligence
Multilayer Perceptron
Computer vision
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA
description After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-23T16:50:05Z
dc.date.available.fl_str_mv 2021-07-23T16:50:05Z
dc.date.issued.fl_str_mv 2021-06-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/14658
identifier_str_mv SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658.
url https://repositorio.ufscar.br/handle/20.500.14289/14658
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv d554bb41-eb51-48a7-90de-4569e43fd2a3
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Planejamento e Uso de Recursos Renováveis - PPGPUR-So
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus Sorocaba
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/ff24155d-11d6-4b1c-a2f1-005d08886ef2/download
https://repositorio.ufscar.br/bitstreams/fb788351-d2bf-4255-9c22-f8665ed329f1/download
https://repositorio.ufscar.br/bitstreams/3c5e2977-5b4a-4f65-95d2-cd44dfa6980c/download
https://repositorio.ufscar.br/bitstreams/b1052eab-9400-4146-b66c-d76dacb082b7/download
https://repositorio.ufscar.br/bitstreams/5043a873-d71c-4d5c-8d75-32a1b12e6fcc/download
https://repositorio.ufscar.br/bitstreams/f68c58c2-0dcd-459a-8ccc-e7432d73fd36/download
https://repositorio.ufscar.br/bitstreams/a0ab2cda-e2ad-43c4-a489-19a31bea3ba6/download
bitstream.checksum.fl_str_mv 08b0978255d8353681a324c09e2dd8fa
7936de58336d51bd5cb12ea656b54ab6
e39d27027a6cc9cb039ad269a5db8e34
d1b20013866ce6aefc9cb47e6a383a29
2d6b9210a1989578839f487d07739eee
65045a4f271ecd9519521ef094293136
9675ac5ae96afbea7da5cab5e170919f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834469007024979968