Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Format: | Master thesis |
| Language: | por |
| Source: | Repositório Institucional da UFSCAR |
| Download full: | https://repositorio.ufscar.br/handle/20.500.14289/14658 |
Summary: | After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system. |
| id |
SCAR_53ccdcad7364e7737d7e323bcd8bbca2 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/14658 |
| network_acronym_str |
SCAR |
| network_name_str |
Repositório Institucional da UFSCAR |
| repository_id_str |
4322 |
| spelling |
Santos, Alan Lucas dosJesus Junior, Waldir Cintra dehttp://lattes.cnpq.br/2614953467362376http://lattes.cnpq.br/67771559193409709b495157-6118-46c2-8224-bb5ff456375f2021-07-23T16:50:05Z2021-07-23T16:50:05Z2021-06-24SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658.https://repositorio.ufscar.br/handle/20.500.14289/14658After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system.Após o crescimento da criação e armazenamento de dados, que são a matéria prima da inteligência artificial, nos últimos anos se nota que em quase toda indústria e setores da saúde já trabalham com softwares de inteligência artificial, os quais são utilizados principalmente no auxílio de automação, análises de fraude, diagnose de doenças humanas, marketing digital, carros autônomos, redes sociais, dentre outros. Porém, no setor agroflorestal, responsáveis por grande parte do PIB econômico brasileiro, são escassos os trabalhos, softwares e informações relacionados a inteligência artificial. Objetivou-se com o presente trabalho é criar um sistema com base em redes neurais artificiais (RNA) para detecção de doenças foliares do eucalipto, capaz de realizar o processamento digital da imagem mediante a utilização de técnicas de visão computacional e treinamento de uma rede neural com a arquitetura Perceptron multicamadas utilizando o algoritmo de treinamento Backpropagation, por meio da linguagem de programação Python. O presente trabalho foi desenvolvido com a coleta de folhas com manchas foliares de Mycosphaerella e ferrugem do eucalipto (Austropuccinia psidii), além de folhas sadias para a criação do dataset para treinamento da Rede Neural Artificial (RNA) perceptron multicamadas (MLP) com o algoritmo de backpropagation. As folhas foram digitalizadas e submetidas ao primeiro processo realizado pelo sistema especialista, transformando as imagens coloridas em tons de cinza, diminuindo de três dimensões de cores (RGB) para apenas uma dimensão, foi realizada a padronização da largura da folha e redimensionamento de sua altura sem a perda de proporção da imagem e por fim a binarização para extração apenas do objeto de interesse, gerando um histograma com as frequências de tons de cinza que foi utilizado como dado de entrada para a rede neural para treinamento e validação. Foram propostas oito topologias de Redes Neurais Artificiais contendo quatro topologias com uma camada oculta de neurônios e quatro topologias com a com duas camadas ocultas de neurônios. Todas as topologias obtiveram em média de 92% de acertos, sendo considerada a mais adequada à topologia com apenas uma camada com 86 neurônios pela média dos melhores resultados obtidos das métricas de acurácia, precisão, revogação e F1 Score acima dos 93% e o baixo esforço computacional para a diagnose da folha o que garante um melhor desempenho do Sistema especialista desenvolvido.Não recebi financiamentoporUniversidade Federal de São CarlosCâmpus SorocabaPrograma de Pós-Graduação em Planejamento e Uso de Recursos Renováveis - PPGPUR-SoUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEucalyptus spp.Manchas foliaresInteligência ArtificialPerceptron multicamadasRedes neuraisVisão computacionalleaf diseasesArtificial IntelligenceMultilayer PerceptronComputer visionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIAUso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucaliptoUse of Neural Network for Development of Expert System for Diagnosis of Foliar Diseases in Eucalyptusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis600600d554bb41-eb51-48a7-90de-4569e43fd2a3reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdfUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdfDissertaçãoapplication/pdf1500131https://repositorio.ufscar.br/bitstreams/ff24155d-11d6-4b1c-a2f1-005d08886ef2/download08b0978255d8353681a324c09e2dd8faMD51trueAnonymousREADcarta-comprovante.pdfcarta-comprovante.pdfCarta Comprovanteapplication/pdf144997https://repositorio.ufscar.br/bitstreams/fb788351-d2bf-4255-9c22-f8665ed329f1/download7936de58336d51bd5cb12ea656b54ab6MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/3c5e2977-5b4a-4f65-95d2-cd44dfa6980c/downloade39d27027a6cc9cb039ad269a5db8e34MD53falseAnonymousREADTEXTUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.txtUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.txtExtracted texttext/plain105280https://repositorio.ufscar.br/bitstreams/b1052eab-9400-4146-b66c-d76dacb082b7/downloadd1b20013866ce6aefc9cb47e6a383a29MD58falseAnonymousREADcarta-comprovante.pdf.txtcarta-comprovante.pdf.txtExtracted texttext/plain1572https://repositorio.ufscar.br/bitstreams/5043a873-d71c-4d5c-8d75-32a1b12e6fcc/download2d6b9210a1989578839f487d07739eeeMD510falseAnonymousREADTHUMBNAILUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.jpgUSO DE REDE NEURAL PARA DESENVOLVIMENTO DE SISTEMA ESPECIALISTA PARA DIAGNOSE DE DOENÇAS FOLIARES EM EUCALIPTO.pdf.jpgIM Thumbnailimage/jpeg3983https://repositorio.ufscar.br/bitstreams/f68c58c2-0dcd-459a-8ccc-e7432d73fd36/download65045a4f271ecd9519521ef094293136MD59falseAnonymousREADcarta-comprovante.pdf.jpgcarta-comprovante.pdf.jpgIM Thumbnailimage/jpeg11749https://repositorio.ufscar.br/bitstreams/a0ab2cda-e2ad-43c4-a489-19a31bea3ba6/download9675ac5ae96afbea7da5cab5e170919fMD511falseAnonymousREAD20.500.14289/146582025-02-05 20:00:07.428http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14658https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T23:00:07Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
| dc.title.por.fl_str_mv |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| dc.title.alternative.por.fl_str_mv |
Use of Neural Network for Development of Expert System for Diagnosis of Foliar Diseases in Eucalyptus |
| title |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| spellingShingle |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto Santos, Alan Lucas dos Eucalyptus spp. Manchas foliares Inteligência Artificial Perceptron multicamadas Redes neurais Visão computacional leaf diseases Artificial Intelligence Multilayer Perceptron Computer vision CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA |
| title_short |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| title_full |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| title_fullStr |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| title_full_unstemmed |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| title_sort |
Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto |
| author |
Santos, Alan Lucas dos |
| author_facet |
Santos, Alan Lucas dos |
| author_role |
author |
| dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/6777155919340970 |
| dc.contributor.author.fl_str_mv |
Santos, Alan Lucas dos |
| dc.contributor.advisor1.fl_str_mv |
Jesus Junior, Waldir Cintra de |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2614953467362376 |
| dc.contributor.authorID.fl_str_mv |
9b495157-6118-46c2-8224-bb5ff456375f |
| contributor_str_mv |
Jesus Junior, Waldir Cintra de |
| dc.subject.por.fl_str_mv |
Eucalyptus spp. Manchas foliares Inteligência Artificial Perceptron multicamadas Redes neurais Visão computacional leaf diseases Artificial Intelligence Multilayer Perceptron Computer vision |
| topic |
Eucalyptus spp. Manchas foliares Inteligência Artificial Perceptron multicamadas Redes neurais Visão computacional leaf diseases Artificial Intelligence Multilayer Perceptron Computer vision CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA |
| dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::FITOPATOLOGIA |
| description |
After the growth of data creation and storage, which are the raw material of artificial intelligence, in recent years it has been noticed that almost every industry and health sector already works with artificial intelligence software, which are used mainly to aid automation, fraud analysis, diagnosis of human diseases, digital marketing, autonomous cars, social networks, among others. However, in the agroforestry sector, responsible for a large part of the Brazilian economic GDP, work, software and information related to artificial intelligence are scarce. The objective of this work is to create a system based on artificial neural networks (ANN) for detection of eucalyptus leaf diseases, capable of performing digital image processing using computer vision techniques and training a neural network. with the multilayer Perceptron architecture using the Backpropagation training algorithm, through the Python programming language. The present work was developed with the collection of leaves with Mycosphaerella leaf spots and eucalyptus rust (Austropuccinia psidii), as well as healthy leaves for the creation of the dataset for training the Artificial Neural Network (ANN) multilayer perceptron (MLP) with the algorithm of backpropagation. The sheets were scanned and submitted to the first process carried out by the expert system, transforming the color images into grayscale, reducing from three color dimensions (RGB) to just one dimension, standardizing the width of the sheet and resizing its height without loss of image proportion and finally binarization to extract only the object of interest, generating a histogram with grayscale frequencies that was used as input to the neural network for training and validation. Eight topologies of Artificial Neural Networks were proposed, containing four topologies with one hidden layer of neurons and four topologies with the one with two hidden layers of neurons. All topologies had an average of 92% hits, being considered the most suitable for the topology with only one layer with 86 neurons by the average of the best results obtained from the accuracy, precision, recall and F1 Score metrics above 93% and the low computational effort for leaf diagnosis which guarantees a better performance of the developed expert system. |
| publishDate |
2021 |
| dc.date.accessioned.fl_str_mv |
2021-07-23T16:50:05Z |
| dc.date.available.fl_str_mv |
2021-07-23T16:50:05Z |
| dc.date.issued.fl_str_mv |
2021-06-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/14658 |
| identifier_str_mv |
SANTOS, Alan Lucas dos. Uso de rede neural para desenvolvimento de sistema especialista para diagnose de doenças foliares em eucalipto. 2021. Dissertação (Mestrado em Planejamento e Uso de Recursos Renováveis) – Universidade Federal de São Carlos, Sorocaba, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14658. |
| url |
https://repositorio.ufscar.br/handle/20.500.14289/14658 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.confidence.fl_str_mv |
600 600 |
| dc.relation.authority.fl_str_mv |
d554bb41-eb51-48a7-90de-4569e43fd2a3 |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus Sorocaba |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Planejamento e Uso de Recursos Renováveis - PPGPUR-So |
| dc.publisher.initials.fl_str_mv |
UFSCar |
| publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus Sorocaba |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
| instname_str |
Universidade Federal de São Carlos (UFSCAR) |
| instacron_str |
UFSCAR |
| institution |
UFSCAR |
| reponame_str |
Repositório Institucional da UFSCAR |
| collection |
Repositório Institucional da UFSCAR |
| bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/ff24155d-11d6-4b1c-a2f1-005d08886ef2/download https://repositorio.ufscar.br/bitstreams/fb788351-d2bf-4255-9c22-f8665ed329f1/download https://repositorio.ufscar.br/bitstreams/3c5e2977-5b4a-4f65-95d2-cd44dfa6980c/download https://repositorio.ufscar.br/bitstreams/b1052eab-9400-4146-b66c-d76dacb082b7/download https://repositorio.ufscar.br/bitstreams/5043a873-d71c-4d5c-8d75-32a1b12e6fcc/download https://repositorio.ufscar.br/bitstreams/f68c58c2-0dcd-459a-8ccc-e7432d73fd36/download https://repositorio.ufscar.br/bitstreams/a0ab2cda-e2ad-43c4-a489-19a31bea3ba6/download |
| bitstream.checksum.fl_str_mv |
08b0978255d8353681a324c09e2dd8fa 7936de58336d51bd5cb12ea656b54ab6 e39d27027a6cc9cb039ad269a5db8e34 d1b20013866ce6aefc9cb47e6a383a29 2d6b9210a1989578839f487d07739eee 65045a4f271ecd9519521ef094293136 9675ac5ae96afbea7da5cab5e170919f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
| repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
| _version_ |
1834469007024979968 |