Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes

Bibliographic Details
Main Author: Pereira, Laís Portugal Rios da Costa
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UFSCAR
Download full: https://repositorio.ufscar.br/handle/20.500.14289/14394
Summary: Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration.
id SCAR_16ad82ebafaf062cfeac6c348eef9ab6
oai_identifier_str oai:repositorio.ufscar.br:20.500.14289/14394
network_acronym_str SCAR
network_name_str Repositório Institucional da UFSCAR
repository_id_str 4322
spelling Pereira, Laís Portugal Rios da CostaZangirolami, Teresa Cristinahttp://lattes.cnpq.br/4546701843297248http://lattes.cnpq.br/8648684269387357c318bb4b-6807-4c8e-a19f-c5fb4608ac892021-06-21T11:03:25Z2021-06-21T11:03:25Z2021-04-27PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394.https://repositorio.ufscar.br/handle/20.500.14289/14394Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration.O etanol de segunda geração (2G) configura-se como uma alternativa para aumentar a oferta do biocombustível sem expansão da área de plantio da cana-de-açúcar e para aproveitar o excedente de bagaço de cana-de-açúcar disponível no Brasil devido à intensa atividade sucroalcooleira. Em decorrência dos avanços da Biologia Molecular, linhagens de Saccharomyces cerevisiae capazes de assimilar e fermentar xilose, principal açúcar presente na fração hemicelulósica de materiais lignocelulósicos, vêm sendo desenvolvidas. Entretanto, a baixa tolerância dessas leveduras aos inibidores (ácido acético, hidroximetilfurfural, furfural e compostos fenólicos) presentes nos hidrolisados de hemicelulose e ao etanol levam à perda de viabilidade das células e à baixa velocidade de fermentação e produtividade em etanol, comprometendo o desempenho e a viabilidade econômica do processo fermentativo. Assim, o desenvolvimento de processos produtivos mais eficientes para obtenção de altas concentrações de etanol, compatíveis com as requeridas na etapa de destilação, a partir de hidrolisados de hemicelulose com altas concentrações de açúcares, é necessário. A melhoria do processo depende tanto da disponibilidade de linhagens de leveduras mais tolerantes aos inibidores quanto de estratégias de operação que minimizem os efeitos dos inibidores. Por outro lado, a incorporação de subprodutos da indústria sucroalcooleira, como o melaço, na formulação do meio para a produção de etanol 2G favorece a flexibilidade e a viabilidade do processo. Nesse contexto, o presente trabalho teve como objetivo avaliar estratégias visando estabelecer um processo robusto e escalonável para obtenção de etanol 2G em condições industriais de fermentação e promover a integração da produção de etanol 1G e 2G. O desempenho de três leveduras recombinantes de última geração (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 e MDS 130), imobilizadas em gel de alginato de cálcio, foi avaliado em hidrolisado de hemicelulose de bagaço de cana-de-açúcar in natura, obtido a partir de pré-tratamento ácido (não concentrado), suplementado ou não com melaço. Meios sintéticos também foram avaliados como controle. Os experimentos foram realizados em batelada repetida em minirreatores e em reator de leito fixo com acompanhamento das fermentações por medida da produção de CO2 e por análise da concentração de açúcares redutores, respectivamente. A concentração de açúcares e metabólitos no sobrenadante foi determinada por cromatografia de alta performance (CLAE) e a viabilidade das células por contagem de células coradas com azul de metileno. Constatou-se que, ao contrário dos hidrolisados de hemicelulose concentrados, a concentração dos inibidores presentes no hidrolisado de hemicelulose in natura não impacta severamente o desempenho da fermentação. Por sua vez, a adição de melaço mostrou-se uma estratégia eficiente para alcançar elevada concentração de açúcares fermentáveis, permitindo obter produtividades de até 23 g/L/h e operação prolongada em batelada repetida, compatíveis com a operação industrial. O efeito tóxico das altas concentrações de etanol (acima de 80 g/L) sobre a viabilidade das células foi observado para todas as linhagens e limitou o reciclo das células a, no máximo, cinco bateladas repetidas. O desempenho das linhagens em termos de conversão de açúcares fermentáveis e produtividade e rendimento em etanol foi similar, com exceção da MDS 130, que se mostrou incapaz de assimilar eficientemente xilose na presença de altas concentrações de hexoses (glicose e/ou frutose).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 130024/2020-1porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEtanol 2GHidrolisado de hemiceluloseSaccharomyces cerevisiae recombinante2G ethanolHemicellulose hydrolysateRecombinant Saccharomyces cerevisiaeENGENHARIAS::ENGENHARIA QUIMICAProdução integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantesIntegrated 1G/2G ethanol production using industrial media and recombinant yeastsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6006004c81169f-86ab-4df0-8284-9cb6516960a4reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação_Laís_FINAL.pdfDissertação_Laís_FINAL.pdfDissertação de Mestradoapplication/pdf2035768https://repositorio.ufscar.br/bitstreams/fa2d2646-c843-4be3-8e24-dbaa6a4a4e8c/download954358bd552c468ff163caec0b436020MD51trueAnonymousREAD2022-06-16Carta_Orientador_Laís.pdfCarta_Orientador_Laís.pdfapplication/pdf101883https://repositorio.ufscar.br/bitstreams/970e3d6e-f3a8-445d-8909-bf36be664509/download39494882cdd065dafbbcdce158757b85MD53falseAnonymousREAD2022-06-16CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/21d96bc8-91d0-470f-ac3d-85ac84dc7768/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREAD2022-06-16TEXTDissertação_Laís_FINAL.pdf.txtDissertação_Laís_FINAL.pdf.txtExtracted texttext/plain224446https://repositorio.ufscar.br/bitstreams/aaf88891-345a-4ed2-a9f0-a92ea8c421ca/downloadf384741f98791a524a87c5ba8fd62096MD59falseAnonymousREAD2022-06-16Carta_Orientador_Laís.pdf.txtCarta_Orientador_Laís.pdf.txtExtracted texttext/plain1252https://repositorio.ufscar.br/bitstreams/7c501b13-4fe1-4ac6-8dee-9889287b43e5/download6b303499623f92ac25071d38ab70f909MD511falseAnonymousREAD2022-06-16THUMBNAILDissertação_Laís_FINAL.pdf.jpgDissertação_Laís_FINAL.pdf.jpgIM Thumbnailimage/jpeg3140https://repositorio.ufscar.br/bitstreams/53fc7d70-1b5f-4dde-9249-3c8bb56bfbad/download5f5e755d306e4355e5118d9873f8b041MD510falseAnonymousREAD2022-06-16Carta_Orientador_Laís.pdf.jpgCarta_Orientador_Laís.pdf.jpgIM Thumbnailimage/jpeg11390https://repositorio.ufscar.br/bitstreams/500f78bb-3711-49ca-9a36-621758aca117/download4b8ec01433dd9b6a7c152e59a0740472MD512falseAnonymousREAD2022-06-1620.500.14289/143942025-02-05 19:49:54.993http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14394https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:49:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false
dc.title.por.fl_str_mv Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
dc.title.alternative.eng.fl_str_mv Integrated 1G/2G ethanol production using industrial media and recombinant yeasts
title Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
spellingShingle Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
Pereira, Laís Portugal Rios da Costa
Etanol 2G
Hidrolisado de hemicelulose
Saccharomyces cerevisiae recombinante
2G ethanol
Hemicellulose hydrolysate
Recombinant Saccharomyces cerevisiae
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
title_full Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
title_fullStr Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
title_full_unstemmed Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
title_sort Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
author Pereira, Laís Portugal Rios da Costa
author_facet Pereira, Laís Portugal Rios da Costa
author_role author
dc.contributor.authorlattes.por.fl_str_mv http://lattes.cnpq.br/8648684269387357
dc.contributor.author.fl_str_mv Pereira, Laís Portugal Rios da Costa
dc.contributor.advisor1.fl_str_mv Zangirolami, Teresa Cristina
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4546701843297248
dc.contributor.authorID.fl_str_mv c318bb4b-6807-4c8e-a19f-c5fb4608ac89
contributor_str_mv Zangirolami, Teresa Cristina
dc.subject.por.fl_str_mv Etanol 2G
Hidrolisado de hemicelulose
topic Etanol 2G
Hidrolisado de hemicelulose
Saccharomyces cerevisiae recombinante
2G ethanol
Hemicellulose hydrolysate
Recombinant Saccharomyces cerevisiae
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv Saccharomyces cerevisiae recombinante
2G ethanol
Hemicellulose hydrolysate
Recombinant Saccharomyces cerevisiae
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-21T11:03:25Z
dc.date.available.fl_str_mv 2021-06-21T11:03:25Z
dc.date.issued.fl_str_mv 2021-04-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394.
dc.identifier.uri.fl_str_mv https://repositorio.ufscar.br/handle/20.500.14289/14394
identifier_str_mv PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394.
url https://repositorio.ufscar.br/handle/20.500.14289/14394
dc.language.iso.fl_str_mv por
language por
dc.relation.confidence.fl_str_mv 600
600
dc.relation.authority.fl_str_mv 4c81169f-86ab-4df0-8284-9cb6516960a4
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química - PPGEQ
dc.publisher.initials.fl_str_mv UFSCar
publisher.none.fl_str_mv Universidade Federal de São Carlos
Câmpus São Carlos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSCAR
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:UFSCAR
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str UFSCAR
institution UFSCAR
reponame_str Repositório Institucional da UFSCAR
collection Repositório Institucional da UFSCAR
bitstream.url.fl_str_mv https://repositorio.ufscar.br/bitstreams/fa2d2646-c843-4be3-8e24-dbaa6a4a4e8c/download
https://repositorio.ufscar.br/bitstreams/970e3d6e-f3a8-445d-8909-bf36be664509/download
https://repositorio.ufscar.br/bitstreams/21d96bc8-91d0-470f-ac3d-85ac84dc7768/download
https://repositorio.ufscar.br/bitstreams/aaf88891-345a-4ed2-a9f0-a92ea8c421ca/download
https://repositorio.ufscar.br/bitstreams/7c501b13-4fe1-4ac6-8dee-9889287b43e5/download
https://repositorio.ufscar.br/bitstreams/53fc7d70-1b5f-4dde-9249-3c8bb56bfbad/download
https://repositorio.ufscar.br/bitstreams/500f78bb-3711-49ca-9a36-621758aca117/download
bitstream.checksum.fl_str_mv 954358bd552c468ff163caec0b436020
39494882cdd065dafbbcdce158757b85
e39d27027a6cc9cb039ad269a5db8e34
f384741f98791a524a87c5ba8fd62096
6b303499623f92ac25071d38ab70f909
5f5e755d306e4355e5118d9873f8b041
4b8ec01433dd9b6a7c152e59a0740472
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv repositorio.sibi@ufscar.br
_version_ 1834468929816231936