Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Master thesis |
Language: | por |
Source: | Repositório Institucional da UFSCAR |
Download full: | https://repositorio.ufscar.br/handle/20.500.14289/14394 |
Summary: | Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration. |
id |
SCAR_16ad82ebafaf062cfeac6c348eef9ab6 |
---|---|
oai_identifier_str |
oai:repositorio.ufscar.br:20.500.14289/14394 |
network_acronym_str |
SCAR |
network_name_str |
Repositório Institucional da UFSCAR |
repository_id_str |
4322 |
spelling |
Pereira, Laís Portugal Rios da CostaZangirolami, Teresa Cristinahttp://lattes.cnpq.br/4546701843297248http://lattes.cnpq.br/8648684269387357c318bb4b-6807-4c8e-a19f-c5fb4608ac892021-06-21T11:03:25Z2021-06-21T11:03:25Z2021-04-27PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394.https://repositorio.ufscar.br/handle/20.500.14289/14394Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration.O etanol de segunda geração (2G) configura-se como uma alternativa para aumentar a oferta do biocombustível sem expansão da área de plantio da cana-de-açúcar e para aproveitar o excedente de bagaço de cana-de-açúcar disponível no Brasil devido à intensa atividade sucroalcooleira. Em decorrência dos avanços da Biologia Molecular, linhagens de Saccharomyces cerevisiae capazes de assimilar e fermentar xilose, principal açúcar presente na fração hemicelulósica de materiais lignocelulósicos, vêm sendo desenvolvidas. Entretanto, a baixa tolerância dessas leveduras aos inibidores (ácido acético, hidroximetilfurfural, furfural e compostos fenólicos) presentes nos hidrolisados de hemicelulose e ao etanol levam à perda de viabilidade das células e à baixa velocidade de fermentação e produtividade em etanol, comprometendo o desempenho e a viabilidade econômica do processo fermentativo. Assim, o desenvolvimento de processos produtivos mais eficientes para obtenção de altas concentrações de etanol, compatíveis com as requeridas na etapa de destilação, a partir de hidrolisados de hemicelulose com altas concentrações de açúcares, é necessário. A melhoria do processo depende tanto da disponibilidade de linhagens de leveduras mais tolerantes aos inibidores quanto de estratégias de operação que minimizem os efeitos dos inibidores. Por outro lado, a incorporação de subprodutos da indústria sucroalcooleira, como o melaço, na formulação do meio para a produção de etanol 2G favorece a flexibilidade e a viabilidade do processo. Nesse contexto, o presente trabalho teve como objetivo avaliar estratégias visando estabelecer um processo robusto e escalonável para obtenção de etanol 2G em condições industriais de fermentação e promover a integração da produção de etanol 1G e 2G. O desempenho de três leveduras recombinantes de última geração (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 e MDS 130), imobilizadas em gel de alginato de cálcio, foi avaliado em hidrolisado de hemicelulose de bagaço de cana-de-açúcar in natura, obtido a partir de pré-tratamento ácido (não concentrado), suplementado ou não com melaço. Meios sintéticos também foram avaliados como controle. Os experimentos foram realizados em batelada repetida em minirreatores e em reator de leito fixo com acompanhamento das fermentações por medida da produção de CO2 e por análise da concentração de açúcares redutores, respectivamente. A concentração de açúcares e metabólitos no sobrenadante foi determinada por cromatografia de alta performance (CLAE) e a viabilidade das células por contagem de células coradas com azul de metileno. Constatou-se que, ao contrário dos hidrolisados de hemicelulose concentrados, a concentração dos inibidores presentes no hidrolisado de hemicelulose in natura não impacta severamente o desempenho da fermentação. Por sua vez, a adição de melaço mostrou-se uma estratégia eficiente para alcançar elevada concentração de açúcares fermentáveis, permitindo obter produtividades de até 23 g/L/h e operação prolongada em batelada repetida, compatíveis com a operação industrial. O efeito tóxico das altas concentrações de etanol (acima de 80 g/L) sobre a viabilidade das células foi observado para todas as linhagens e limitou o reciclo das células a, no máximo, cinco bateladas repetidas. O desempenho das linhagens em termos de conversão de açúcares fermentáveis e produtividade e rendimento em etanol foi similar, com exceção da MDS 130, que se mostrou incapaz de assimilar eficientemente xilose na presença de altas concentrações de hexoses (glicose e/ou frutose).Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNPq: 130024/2020-1porUniversidade Federal de São CarlosCâmpus São CarlosPrograma de Pós-Graduação em Engenharia Química - PPGEQUFSCarAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessEtanol 2GHidrolisado de hemiceluloseSaccharomyces cerevisiae recombinante2G ethanolHemicellulose hydrolysateRecombinant Saccharomyces cerevisiaeENGENHARIAS::ENGENHARIA QUIMICAProdução integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantesIntegrated 1G/2G ethanol production using industrial media and recombinant yeastsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6006004c81169f-86ab-4df0-8284-9cb6516960a4reponame:Repositório Institucional da UFSCARinstname:Universidade Federal de São Carlos (UFSCAR)instacron:UFSCARORIGINALDissertação_Laís_FINAL.pdfDissertação_Laís_FINAL.pdfDissertação de Mestradoapplication/pdf2035768https://repositorio.ufscar.br/bitstreams/fa2d2646-c843-4be3-8e24-dbaa6a4a4e8c/download954358bd552c468ff163caec0b436020MD51trueAnonymousREAD2022-06-16Carta_Orientador_Laís.pdfCarta_Orientador_Laís.pdfapplication/pdf101883https://repositorio.ufscar.br/bitstreams/970e3d6e-f3a8-445d-8909-bf36be664509/download39494882cdd065dafbbcdce158757b85MD53falseAnonymousREAD2022-06-16CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufscar.br/bitstreams/21d96bc8-91d0-470f-ac3d-85ac84dc7768/downloade39d27027a6cc9cb039ad269a5db8e34MD54falseAnonymousREAD2022-06-16TEXTDissertação_Laís_FINAL.pdf.txtDissertação_Laís_FINAL.pdf.txtExtracted texttext/plain224446https://repositorio.ufscar.br/bitstreams/aaf88891-345a-4ed2-a9f0-a92ea8c421ca/downloadf384741f98791a524a87c5ba8fd62096MD59falseAnonymousREAD2022-06-16Carta_Orientador_Laís.pdf.txtCarta_Orientador_Laís.pdf.txtExtracted texttext/plain1252https://repositorio.ufscar.br/bitstreams/7c501b13-4fe1-4ac6-8dee-9889287b43e5/download6b303499623f92ac25071d38ab70f909MD511falseAnonymousREAD2022-06-16THUMBNAILDissertação_Laís_FINAL.pdf.jpgDissertação_Laís_FINAL.pdf.jpgIM Thumbnailimage/jpeg3140https://repositorio.ufscar.br/bitstreams/53fc7d70-1b5f-4dde-9249-3c8bb56bfbad/download5f5e755d306e4355e5118d9873f8b041MD510falseAnonymousREAD2022-06-16Carta_Orientador_Laís.pdf.jpgCarta_Orientador_Laís.pdf.jpgIM Thumbnailimage/jpeg11390https://repositorio.ufscar.br/bitstreams/500f78bb-3711-49ca-9a36-621758aca117/download4b8ec01433dd9b6a7c152e59a0740472MD512falseAnonymousREAD2022-06-1620.500.14289/143942025-02-05 19:49:54.993http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.ufscar.br:20.500.14289/14394https://repositorio.ufscar.brRepositório InstitucionalPUBhttps://repositorio.ufscar.br/oai/requestrepositorio.sibi@ufscar.bropendoar:43222025-02-05T22:49:54Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.por.fl_str_mv |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
dc.title.alternative.eng.fl_str_mv |
Integrated 1G/2G ethanol production using industrial media and recombinant yeasts |
title |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
spellingShingle |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes Pereira, Laís Portugal Rios da Costa Etanol 2G Hidrolisado de hemicelulose Saccharomyces cerevisiae recombinante 2G ethanol Hemicellulose hydrolysate Recombinant Saccharomyces cerevisiae ENGENHARIAS::ENGENHARIA QUIMICA |
title_short |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
title_full |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
title_fullStr |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
title_full_unstemmed |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
title_sort |
Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes |
author |
Pereira, Laís Portugal Rios da Costa |
author_facet |
Pereira, Laís Portugal Rios da Costa |
author_role |
author |
dc.contributor.authorlattes.por.fl_str_mv |
http://lattes.cnpq.br/8648684269387357 |
dc.contributor.author.fl_str_mv |
Pereira, Laís Portugal Rios da Costa |
dc.contributor.advisor1.fl_str_mv |
Zangirolami, Teresa Cristina |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4546701843297248 |
dc.contributor.authorID.fl_str_mv |
c318bb4b-6807-4c8e-a19f-c5fb4608ac89 |
contributor_str_mv |
Zangirolami, Teresa Cristina |
dc.subject.por.fl_str_mv |
Etanol 2G Hidrolisado de hemicelulose |
topic |
Etanol 2G Hidrolisado de hemicelulose Saccharomyces cerevisiae recombinante 2G ethanol Hemicellulose hydrolysate Recombinant Saccharomyces cerevisiae ENGENHARIAS::ENGENHARIA QUIMICA |
dc.subject.eng.fl_str_mv |
Saccharomyces cerevisiae recombinante 2G ethanol Hemicellulose hydrolysate Recombinant Saccharomyces cerevisiae |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA QUIMICA |
description |
Second generation (2G) ethanol is an alternative to increase the supply of this biofuel without expanding the sugarcane plantation area and to utilize the excess of sugarcane bagasse available in Brazil due to the intense economic activity related to sugar and alcohol production. Due to the advances in Molecular Biology, Saccharomyces cerevisiae strains capable of assimilating and fermenting xylose, the main sugar present in the hemicellulosic fraction of lignocellulosic materials, have been developed. However, the low tolerance of these yeasts to hemicellulose hydrolysates inhibitors (acetic acid, hydroxymethylfurfural, furfural and phenolic compounds) and to ethanol leads to loss of cell viability and to low fermentation rates and ethanol productivities, compromising the performance and economic viability of the fermentation process. Thus, the development of more efficient production processes to obtain high ethanol concentrations, compatible with those required in the distillation step, from hemicellulose hydrolysates with high sugar concentrations, is necessary. Process improvement depends both on the availability of yeast strains that are more tolerant to inhibitors and on operating strategies that minimize the effects of the inhibitors. On the other hand, the incorporation of by-products from the sugar and alcohol industry, such as molasses, in the composition of the medium for the production of 2G ethanol favors the flexibility and economic viability of the process. In this context, the present study aimed to evaluate strategies to establish a robust and scalable process for obtaining 2G ethanol under industrial fermentation conditions and to promote the integration of 1G and 2G ethanol production. The performance of three latest generation recombinant yeasts (S. cerevisiae GSE16-T18, GSE16-T18 HAA1 and MDS 130), immobilized on calcium alginate gel, was evaluated in in natura sugarcane bagasse hemicellulose hydrolysate, obtained from acid pre-treatment (not concentrated), supplemented or not with molasses. Synthetic media were also evaluated as a control. The experiments were carried out in repeated batches in minireactors and in a fixed bed reactor and fermentations were accompanied by carbon dioxide production and by analysis of reducing sugar concentration, respectively. The concentration of sugars and metabolites in the supernatant was determined by High Performance Liquid Chromatography (HPLC) and the viability of the cells by the methylene blue technique. It was found that, unlike concentrated hemicellulose hydrolysates, the concentration of inhibitors present in in natura hemicellulose hydrolysate does not severely impact the fermentation performance. The supplementation with molasses proved to be an efficient strategy to achieve high fermentable sugar concentration, allowing to obtain productivities of up to 23 g/L/h and prolonged operation in repeated batches, compatible with the industrial operation. The toxic effect of high ethanol concentrations (above 80 g/L) on cell viability was observed for all strains and limited cell recycling to a maximum of five repeated batches. The performance of the strains in terms of conversion of fermentable sugars and productivity and yield in ethanol was similar, with the exception of MDS 130, which was unable to efficiently assimilate xylose in the presence of high hexose (glucose and/or fructose) concentration. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-06-21T11:03:25Z |
dc.date.available.fl_str_mv |
2021-06-21T11:03:25Z |
dc.date.issued.fl_str_mv |
2021-04-27 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufscar.br/handle/20.500.14289/14394 |
identifier_str_mv |
PEREIRA, Laís Portugal Rios da Costa. Produção integrada de etanol 1G/2G utilizando meios industriais e leveduras recombinantes. 2021. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de São Carlos, São Carlos, 2021. Disponível em: https://repositorio.ufscar.br/handle/20.500.14289/14394. |
url |
https://repositorio.ufscar.br/handle/20.500.14289/14394 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.confidence.fl_str_mv |
600 600 |
dc.relation.authority.fl_str_mv |
4c81169f-86ab-4df0-8284-9cb6516960a4 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química - PPGEQ |
dc.publisher.initials.fl_str_mv |
UFSCar |
publisher.none.fl_str_mv |
Universidade Federal de São Carlos Câmpus São Carlos |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFSCAR instname:Universidade Federal de São Carlos (UFSCAR) instacron:UFSCAR |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
UFSCAR |
institution |
UFSCAR |
reponame_str |
Repositório Institucional da UFSCAR |
collection |
Repositório Institucional da UFSCAR |
bitstream.url.fl_str_mv |
https://repositorio.ufscar.br/bitstreams/fa2d2646-c843-4be3-8e24-dbaa6a4a4e8c/download https://repositorio.ufscar.br/bitstreams/970e3d6e-f3a8-445d-8909-bf36be664509/download https://repositorio.ufscar.br/bitstreams/21d96bc8-91d0-470f-ac3d-85ac84dc7768/download https://repositorio.ufscar.br/bitstreams/aaf88891-345a-4ed2-a9f0-a92ea8c421ca/download https://repositorio.ufscar.br/bitstreams/7c501b13-4fe1-4ac6-8dee-9889287b43e5/download https://repositorio.ufscar.br/bitstreams/53fc7d70-1b5f-4dde-9249-3c8bb56bfbad/download https://repositorio.ufscar.br/bitstreams/500f78bb-3711-49ca-9a36-621758aca117/download |
bitstream.checksum.fl_str_mv |
954358bd552c468ff163caec0b436020 39494882cdd065dafbbcdce158757b85 e39d27027a6cc9cb039ad269a5db8e34 f384741f98791a524a87c5ba8fd62096 6b303499623f92ac25071d38ab70f909 5f5e755d306e4355e5118d9873f8b041 4b8ec01433dd9b6a7c152e59a0740472 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFSCAR - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
repositorio.sibi@ufscar.br |
_version_ |
1834468929816231936 |