Export Ready — 

Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles

Bibliographic Details
Main Author: Dadfarnia,Shayessteh
Publication Date: 2015
Other Authors: Shabani,Ali Mohammad Haji, Kazemi,Elahe, Ahmad,Seyed, Khormizi,Heydari, Tammadon,Fattema
Format: Article
Language: eng
Source: Journal of the Brazilian Chemical Society (Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000601180
Summary: Silver ion imprinted polymer (IIP) was synthesized in the presence of Ag(I)-N,N’‑bis(salicylidene)ethylenediamine (salen) complex using 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and 2,2-azobis(isobutyronitrile) (AIBN) as the initiator. The Ag(I)-imprinted polymer (IIP) particles were characterized by SEM (scanning electron microscope), FTIR (Fourier transform infrared spectroscopy) and BET/BJH (Brunauer-Emmett-Teller/Barrett-Joyner-Halenda) analysis. The imprinted Ag(I) ions were completely removed by leaching the IIP with thiourea (0.5 mol L-1). The polymer was employed as a selective sorbent for extraction and separation of the trace amounts of the Ag(I) ions. The preconcentrated ion was determined via the flame atomic absorption spectrometry (FAAS) or it was reduced to silver nanoparticles and quantified by spectrophotometry based on its localized surface plasmon resonance peak (LSPRP). The figures of merit of both methods were compared. Under the optimized conditions, a sample volume of 80 mL resulted in an enhancement factor of 312. The detection limit (3Sb/m) and the relative standard deviation (n = 10) at 10 µg L-1 level for FAAS were found to be 0.06 µg L-1, 2.9%, whereas for the LSPRP method they were 0.5 µg L-1 and 10.3%, respectively. The methods were successfully applied to the determination of silver in radiology film, hair, nails, and water samples.
id SBQ-2_a54cf7a1c37f19e4ddc186a594e030e8
oai_identifier_str oai:scielo:S0103-50532015000601180
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticlessilversolid phase extractionion imprinted polymersilver nanoparticleslocalized surface plasmon resonance peakflame atomic absorption spectrometrySilver ion imprinted polymer (IIP) was synthesized in the presence of Ag(I)-N,N’‑bis(salicylidene)ethylenediamine (salen) complex using 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and 2,2-azobis(isobutyronitrile) (AIBN) as the initiator. The Ag(I)-imprinted polymer (IIP) particles were characterized by SEM (scanning electron microscope), FTIR (Fourier transform infrared spectroscopy) and BET/BJH (Brunauer-Emmett-Teller/Barrett-Joyner-Halenda) analysis. The imprinted Ag(I) ions were completely removed by leaching the IIP with thiourea (0.5 mol L-1). The polymer was employed as a selective sorbent for extraction and separation of the trace amounts of the Ag(I) ions. The preconcentrated ion was determined via the flame atomic absorption spectrometry (FAAS) or it was reduced to silver nanoparticles and quantified by spectrophotometry based on its localized surface plasmon resonance peak (LSPRP). The figures of merit of both methods were compared. Under the optimized conditions, a sample volume of 80 mL resulted in an enhancement factor of 312. The detection limit (3Sb/m) and the relative standard deviation (n = 10) at 10 µg L-1 level for FAAS were found to be 0.06 µg L-1, 2.9%, whereas for the LSPRP method they were 0.5 µg L-1 and 10.3%, respectively. The methods were successfully applied to the determination of silver in radiology film, hair, nails, and water samples.Sociedade Brasileira de Química2015-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000601180Journal of the Brazilian Chemical Society v.26 n.6 2015reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.5935/0103-5053.20150082info:eu-repo/semantics/openAccessDadfarnia,ShayesstehShabani,Ali Mohammad HajiKazemi,ElaheAhmad,SeyedKhormizi,HeydariTammadon,Fattemaeng2020-06-05T00:00:00Zoai:scielo:S0103-50532015000601180Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2020-06-05T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
title Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
spellingShingle Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
Dadfarnia,Shayessteh
silver
solid phase extraction
ion imprinted polymer
silver nanoparticles
localized surface plasmon resonance peak
flame atomic absorption spectrometry
title_short Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
title_full Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
title_fullStr Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
title_full_unstemmed Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
title_sort Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles
author Dadfarnia,Shayessteh
author_facet Dadfarnia,Shayessteh
Shabani,Ali Mohammad Haji
Kazemi,Elahe
Ahmad,Seyed
Khormizi,Heydari
Tammadon,Fattema
author_role author
author2 Shabani,Ali Mohammad Haji
Kazemi,Elahe
Ahmad,Seyed
Khormizi,Heydari
Tammadon,Fattema
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Dadfarnia,Shayessteh
Shabani,Ali Mohammad Haji
Kazemi,Elahe
Ahmad,Seyed
Khormizi,Heydari
Tammadon,Fattema
dc.subject.por.fl_str_mv silver
solid phase extraction
ion imprinted polymer
silver nanoparticles
localized surface plasmon resonance peak
flame atomic absorption spectrometry
topic silver
solid phase extraction
ion imprinted polymer
silver nanoparticles
localized surface plasmon resonance peak
flame atomic absorption spectrometry
description Silver ion imprinted polymer (IIP) was synthesized in the presence of Ag(I)-N,N’‑bis(salicylidene)ethylenediamine (salen) complex using 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, and 2,2-azobis(isobutyronitrile) (AIBN) as the initiator. The Ag(I)-imprinted polymer (IIP) particles were characterized by SEM (scanning electron microscope), FTIR (Fourier transform infrared spectroscopy) and BET/BJH (Brunauer-Emmett-Teller/Barrett-Joyner-Halenda) analysis. The imprinted Ag(I) ions were completely removed by leaching the IIP with thiourea (0.5 mol L-1). The polymer was employed as a selective sorbent for extraction and separation of the trace amounts of the Ag(I) ions. The preconcentrated ion was determined via the flame atomic absorption spectrometry (FAAS) or it was reduced to silver nanoparticles and quantified by spectrophotometry based on its localized surface plasmon resonance peak (LSPRP). The figures of merit of both methods were compared. Under the optimized conditions, a sample volume of 80 mL resulted in an enhancement factor of 312. The detection limit (3Sb/m) and the relative standard deviation (n = 10) at 10 µg L-1 level for FAAS were found to be 0.06 µg L-1, 2.9%, whereas for the LSPRP method they were 0.5 µg L-1 and 10.3%, respectively. The methods were successfully applied to the determination of silver in radiology film, hair, nails, and water samples.
publishDate 2015
dc.date.none.fl_str_mv 2015-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000601180
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015000601180
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5935/0103-5053.20150082
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.26 n.6 2015
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318177370243072