Construction of Polygonal Color Codes from Hyperbolic Tesselations
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
| Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043 |
Summary: | ABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3. |
| id |
SBMAC-1_880729cdf5bdc43e0047bec04b5f481e |
|---|---|
| oai_identifier_str |
oai:scielo:S2179-84512020000100043 |
| network_acronym_str |
SBMAC-1 |
| network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
| repository_id_str |
|
| spelling |
Construction of Polygonal Color Codes from Hyperbolic Tesselationscolor codestopological quantum codeshyperbolic geometryABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.0043info:eu-repo/semantics/openAccessSOARES JR,W.S.SILVA,E.B.VIZENTIM,E.J.SOARES,F.P.B.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100043Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
| dc.title.none.fl_str_mv |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| title |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| spellingShingle |
Construction of Polygonal Color Codes from Hyperbolic Tesselations SOARES JR,W.S. color codes topological quantum codes hyperbolic geometry |
| title_short |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| title_full |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| title_fullStr |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| title_full_unstemmed |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| title_sort |
Construction of Polygonal Color Codes from Hyperbolic Tesselations |
| author |
SOARES JR,W.S. |
| author_facet |
SOARES JR,W.S. SILVA,E.B. VIZENTIM,E.J. SOARES,F.P.B. |
| author_role |
author |
| author2 |
SILVA,E.B. VIZENTIM,E.J. SOARES,F.P.B. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
SOARES JR,W.S. SILVA,E.B. VIZENTIM,E.J. SOARES,F.P.B. |
| dc.subject.por.fl_str_mv |
color codes topological quantum codes hyperbolic geometry |
| topic |
color codes topological quantum codes hyperbolic geometry |
| description |
ABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-04-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043 |
| url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.01.0043 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
| publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
| dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.1 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
| instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
| instacron_str |
SBMAC |
| institution |
SBMAC |
| reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
| collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
| repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
| repository.mail.fl_str_mv |
castelo@icmc.usp.br |
| _version_ |
1752122220633653248 |