Construction of Polygonal Color Codes from Hyperbolic Tesselations

Bibliographic Details
Main Author: SOARES JR,W.S.
Publication Date: 2020
Other Authors: SILVA,E.B., VIZENTIM,E.J., SOARES,F.P.B.
Format: Article
Language: eng
Source: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Download full: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043
Summary: ABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3.
id SBMAC-1_880729cdf5bdc43e0047bec04b5f481e
oai_identifier_str oai:scielo:S2179-84512020000100043
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Construction of Polygonal Color Codes from Hyperbolic Tesselationscolor codestopological quantum codeshyperbolic geometryABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.0043info:eu-repo/semantics/openAccessSOARES JR,W.S.SILVA,E.B.VIZENTIM,E.J.SOARES,F.P.B.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100043Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Construction of Polygonal Color Codes from Hyperbolic Tesselations
title Construction of Polygonal Color Codes from Hyperbolic Tesselations
spellingShingle Construction of Polygonal Color Codes from Hyperbolic Tesselations
SOARES JR,W.S.
color codes
topological quantum codes
hyperbolic geometry
title_short Construction of Polygonal Color Codes from Hyperbolic Tesselations
title_full Construction of Polygonal Color Codes from Hyperbolic Tesselations
title_fullStr Construction of Polygonal Color Codes from Hyperbolic Tesselations
title_full_unstemmed Construction of Polygonal Color Codes from Hyperbolic Tesselations
title_sort Construction of Polygonal Color Codes from Hyperbolic Tesselations
author SOARES JR,W.S.
author_facet SOARES JR,W.S.
SILVA,E.B.
VIZENTIM,E.J.
SOARES,F.P.B.
author_role author
author2 SILVA,E.B.
VIZENTIM,E.J.
SOARES,F.P.B.
author2_role author
author
author
dc.contributor.author.fl_str_mv SOARES JR,W.S.
SILVA,E.B.
VIZENTIM,E.J.
SOARES,F.P.B.
dc.subject.por.fl_str_mv color codes
topological quantum codes
hyperbolic geometry
topic color codes
topological quantum codes
hyperbolic geometry
description ABSTRACT This current work propose a technique to generate polygonal color codes in the hyperbolic geometry environment. The color codes were introduced by Bombin and Martin-Delgado in 2007, and the called triangular color codes have a higher degree of interest because they allow the implementation of the Clifford group, but they encode only one qubit. In 2018 Soares e Silva extended the triangular codes to the polygonal codes, which encode more qubits. Using an approach through hyperbolic tessellations we show that it is possible to generate Hyperbolic Polygonal codes, which encode more than one qubit with the capacity to implement the entire Clifford group and also having a better coding rate than the previously mentioned codes, for the color codes on surfaces with boundary with minimum distance d = 3.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100043
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2020.021.01.0043
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.21 n.1 2020
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220633653248