An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction

Detalhes bibliográficos
Autor(a) principal: GONZAGA DE OLIVEIRA,S. L.
Data de Publicação: 2019
Outros Autores: A. A. A. M.,ABREU
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300497
Resumo: Abstract. The need to determine pseudoperipheral vertices arises from several graph-theoretical approaches for ordering sparse matrix equations. The results of two algorithms for finding such vertices, namely, the George-Liu and Kaveh-Bondarabady algorithms, are evaluated in this work along with a variant of the Kaveh-Bondarabady algorithm. The results suggest that the well-know George-Liu algorithm dominates the other two pseudoperipheral vertex finders mainly when considering the computational times of the algorithms.
id SBMAC-1_0e3f6f7baf2fe58860d8597e65a7f6e3
oai_identifier_str oai:scielo:S2179-84512019000300497
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reductionsparse matricesgraph labeling,graph algorithmReverse Cuthill-McKee methodbandwidth reductiongraph theoryAbstract. The need to determine pseudoperipheral vertices arises from several graph-theoretical approaches for ordering sparse matrix equations. The results of two algorithms for finding such vertices, namely, the George-Liu and Kaveh-Bondarabady algorithms, are evaluated in this work along with a variant of the Kaveh-Bondarabady algorithm. The results suggest that the well-know George-Liu algorithm dominates the other two pseudoperipheral vertex finders mainly when considering the computational times of the algorithms.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300497TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0497info:eu-repo/semantics/openAccessGONZAGA DE OLIVEIRA,S. L.A. A. A. M.,ABREUeng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300497Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
title An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
spellingShingle An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
GONZAGA DE OLIVEIRA,S. L.
sparse matrices
graph labeling,
graph algorithm
Reverse Cuthill-McKee method
bandwidth reduction
graph theory
title_short An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
title_full An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
title_fullStr An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
title_full_unstemmed An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
title_sort An Experimental Analysis of Three Pseudo-peripheral Vertex Finders in conjunction with the Reverse Cuthill-McKee Method for Bandwidth Reduction
author GONZAGA DE OLIVEIRA,S. L.
author_facet GONZAGA DE OLIVEIRA,S. L.
A. A. A. M.,ABREU
author_role author
author2 A. A. A. M.,ABREU
author2_role author
dc.contributor.author.fl_str_mv GONZAGA DE OLIVEIRA,S. L.
A. A. A. M.,ABREU
dc.subject.por.fl_str_mv sparse matrices
graph labeling,
graph algorithm
Reverse Cuthill-McKee method
bandwidth reduction
graph theory
topic sparse matrices
graph labeling,
graph algorithm
Reverse Cuthill-McKee method
bandwidth reduction
graph theory
description Abstract. The need to determine pseudoperipheral vertices arises from several graph-theoretical approaches for ordering sparse matrix equations. The results of two algorithms for finding such vertices, namely, the George-Liu and Kaveh-Bondarabady algorithms, are evaluated in this work along with a variant of the Kaveh-Bondarabady algorithm. The results suggest that the well-know George-Liu algorithm dominates the other two pseudoperipheral vertex finders mainly when considering the computational times of the algorithms.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300497
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300497
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2019.020.03.0497
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.20 n.3 2019
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220626313216