The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Format: | Article |
| Language: | eng |
| Source: | Revista Brasileira de Ensino de Física (Online) |
| Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100422 |
Summary: | We calculate the magnetic field generated by a steady current that takes the shape of two types of special curves: hypocycloids and epicycloids with n numbers of sides. The computation was performed in the center of the referred curves. For this purpose, we use the Biot-Savart law which is studied in every introductory-level electricity and magnetism course. The result is quite general because it is obtained as a function of the number of sides of the curve and in terms of a parameter ϵ that identifies the type of curve considered (ϵ = −1 hypocycloids and ϵ = + 1 epicycloids). |
| id |
SBF-1_c7d45fb2c20202c37d67a86b593157f1 |
|---|---|
| oai_identifier_str |
oai:scielo:S1806-11172021000100422 |
| network_acronym_str |
SBF-1 |
| network_name_str |
Revista Brasileira de Ensino de Física (Online) |
| repository_id_str |
|
| spelling |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop currentMagnetic fieldBiot-Savart LawHypocycloidEpicycloidWe calculate the magnetic field generated by a steady current that takes the shape of two types of special curves: hypocycloids and epicycloids with n numbers of sides. The computation was performed in the center of the referred curves. For this purpose, we use the Biot-Savart law which is studied in every introductory-level electricity and magnetism course. The result is quite general because it is obtained as a function of the number of sides of the curve and in terms of a parameter ϵ that identifies the type of curve considered (ϵ = −1 hypocycloids and ϵ = + 1 epicycloids).Sociedade Brasileira de Física2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100422Revista Brasileira de Ensino de Física v.43 2021reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2020-0482info:eu-repo/semantics/openAccessAbad,David Romeroeng2021-02-08T00:00:00Zoai:scielo:S1806-11172021000100422Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2021-02-08T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
| dc.title.none.fl_str_mv |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| title |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| spellingShingle |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current Abad,David Romero Magnetic field Biot-Savart Law Hypocycloid Epicycloid |
| title_short |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| title_full |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| title_fullStr |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| title_full_unstemmed |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| title_sort |
The Magnetic field for an n-cusped Epi-and Hypo-Cycloids loop current |
| author |
Abad,David Romero |
| author_facet |
Abad,David Romero |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Abad,David Romero |
| dc.subject.por.fl_str_mv |
Magnetic field Biot-Savart Law Hypocycloid Epicycloid |
| topic |
Magnetic field Biot-Savart Law Hypocycloid Epicycloid |
| description |
We calculate the magnetic field generated by a steady current that takes the shape of two types of special curves: hypocycloids and epicycloids with n numbers of sides. The computation was performed in the center of the referred curves. For this purpose, we use the Biot-Savart law which is studied in every introductory-level electricity and magnetism course. The result is quite general because it is obtained as a function of the number of sides of the curve and in terms of a parameter ϵ that identifies the type of curve considered (ϵ = −1 hypocycloids and ϵ = + 1 epicycloids). |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-01-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100422 |
| url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172021000100422 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2020-0482 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
| publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
| dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.43 2021 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
| instname_str |
Sociedade Brasileira de Física (SBF) |
| instacron_str |
SBF |
| institution |
SBF |
| reponame_str |
Revista Brasileira de Ensino de Física (Online) |
| collection |
Revista Brasileira de Ensino de Física (Online) |
| repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
| repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
| _version_ |
1752122425205587968 |