Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , |
Format: | Article |
Language: | por |
Source: | Brazilian Journal of Information Systems |
Download full: | https://journals-sol.sbc.org.br/index.php/isys/article/view/2230 |
Summary: | Mortality Tables are tables structured with mortality data, especially mortality rates observed at all ages, used in pension funds and life insurance markets. This article concerns the application of the neural network model to the construction of future mortality tables, using the Lee-Carter model for comparison. The proposed model was a LSTM (Long-Short Term Memory) Neural Network model, including a bidirectional variation. This network is characterized by the sequential processing of data over time. The data for the prediction came from historical mortality table data prepared by the IBGE (Brazilian Institute of Geography and Statistics) and the Human Mortality Database. The results point to a reasonable use as an auxiliary tool for predicting death probabilities. |
id |
SBC-5_d5467aebd8d87a9f9e0f23f8084ff396 |
---|---|
oai_identifier_str |
oai:journals-sol.sbc.org.br:article/2230 |
network_acronym_str |
SBC-5 |
network_name_str |
Brazilian Journal of Information Systems |
repository_id_str |
|
spelling |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death ProbabilitiesConstrução de Tábuas de Mortalidade com o uso de Redes Neurais LSTM Bidirectional para Predição das Probabilidades de MorteMortality TablePension FundsLife ExpectancyForecastLee-Carter ModelNeural NetworkLSTMTábua de MortalidadePrevidênciaExpectativa de VidaPrevisãoModelo Lee-CarterRedes NeuraisLSTMMortality Tables are tables structured with mortality data, especially mortality rates observed at all ages, used in pension funds and life insurance markets. This article concerns the application of the neural network model to the construction of future mortality tables, using the Lee-Carter model for comparison. The proposed model was a LSTM (Long-Short Term Memory) Neural Network model, including a bidirectional variation. This network is characterized by the sequential processing of data over time. The data for the prediction came from historical mortality table data prepared by the IBGE (Brazilian Institute of Geography and Statistics) and the Human Mortality Database. The results point to a reasonable use as an auxiliary tool for predicting death probabilities.As Tábuas de Mortalidade são tabelas estruturadas contendo dados epidemiológicos traduzidos em probabilidades de morte associada a cada idade de vida, utilizadas no mercado de previdência e seguros. Este artigo discorre sobre a aplicação do modelo de redes neurais para a construção de tábuas de mortalidade futuras, tendo como comparação o modelo Lee-Carter. O modelo proposto foi a Rede LSTM (Long-Short Term Memory), sendo implementada também uma variação bidirecional. Esta rede tem como característica o processamento sequencial de dados ao longo do tempo. Os dados para a predição são oriundos de dados históricos de tábuas de mortalidade elaboradas pelo IBGE (Instituto Brasileiro de Geografia e Estatística) e do The Human Mortality Database. Os resultados apontam para uma utilização razoável como ferramenta auxiliar de predição das probabilidades de morte.Sociedade Brasileira de Computação2022-10-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://journals-sol.sbc.org.br/index.php/isys/article/view/223010.5753/isys.2022.2230iSys - Revista Brasileira de Sistemas de Informação; v. 15 n. 1 (2022); 9:1-9:24iSys - Brazilian Journal of Information Systems; Vol. 15 No. 1 (2022); 9:1-9:241984-290210.5753/isys.2022.1reponame:Brazilian Journal of Information Systemsinstname:Sociedade Brasileira de Computação (SBC)instacron:SBCporhttps://journals-sol.sbc.org.br/index.php/isys/article/view/2230/1933Copyright (c) 2022 The authorshttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessNascimento, José DouglasEscovedo, TatianaKalinowski, Marcos2022-10-18T22:43:17Zoai:journals-sol.sbc.org.br:article/2230Revistahttps://journals-sol.sbc.org.br/index.php/isys/ONGhttps://journals-sol.sbc.org.br/index.php/isys/oaipublicacoes@sbc.org.br1984-29021984-2902opendoar:2022-10-18T22:43:17Brazilian Journal of Information Systems - Sociedade Brasileira de Computação (SBC)false |
dc.title.none.fl_str_mv |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities Construção de Tábuas de Mortalidade com o uso de Redes Neurais LSTM Bidirectional para Predição das Probabilidades de Morte |
title |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
spellingShingle |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities Nascimento, José Douglas Mortality Table Pension Funds Life Expectancy Forecast Lee-Carter Model Neural Network LSTM Tábua de Mortalidade Previdência Expectativa de Vida Previsão Modelo Lee-Carter Redes Neurais LSTM |
title_short |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
title_full |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
title_fullStr |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
title_full_unstemmed |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
title_sort |
Construction of Mortality Tables using Bidirectional LSTM Neural Networks to Predict Death Probabilities |
author |
Nascimento, José Douglas |
author_facet |
Nascimento, José Douglas Escovedo, Tatiana Kalinowski, Marcos |
author_role |
author |
author2 |
Escovedo, Tatiana Kalinowski, Marcos |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Nascimento, José Douglas Escovedo, Tatiana Kalinowski, Marcos |
dc.subject.por.fl_str_mv |
Mortality Table Pension Funds Life Expectancy Forecast Lee-Carter Model Neural Network LSTM Tábua de Mortalidade Previdência Expectativa de Vida Previsão Modelo Lee-Carter Redes Neurais LSTM |
topic |
Mortality Table Pension Funds Life Expectancy Forecast Lee-Carter Model Neural Network LSTM Tábua de Mortalidade Previdência Expectativa de Vida Previsão Modelo Lee-Carter Redes Neurais LSTM |
description |
Mortality Tables are tables structured with mortality data, especially mortality rates observed at all ages, used in pension funds and life insurance markets. This article concerns the application of the neural network model to the construction of future mortality tables, using the Lee-Carter model for comparison. The proposed model was a LSTM (Long-Short Term Memory) Neural Network model, including a bidirectional variation. This network is characterized by the sequential processing of data over time. The data for the prediction came from historical mortality table data prepared by the IBGE (Brazilian Institute of Geography and Statistics) and the Human Mortality Database. The results point to a reasonable use as an auxiliary tool for predicting death probabilities. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-18 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://journals-sol.sbc.org.br/index.php/isys/article/view/2230 10.5753/isys.2022.2230 |
url |
https://journals-sol.sbc.org.br/index.php/isys/article/view/2230 |
identifier_str_mv |
10.5753/isys.2022.2230 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://journals-sol.sbc.org.br/index.php/isys/article/view/2230/1933 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 The authors https://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 The authors https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
publisher.none.fl_str_mv |
Sociedade Brasileira de Computação |
dc.source.none.fl_str_mv |
iSys - Revista Brasileira de Sistemas de Informação; v. 15 n. 1 (2022); 9:1-9:24 iSys - Brazilian Journal of Information Systems; Vol. 15 No. 1 (2022); 9:1-9:24 1984-2902 10.5753/isys.2022.1 reponame:Brazilian Journal of Information Systems instname:Sociedade Brasileira de Computação (SBC) instacron:SBC |
instname_str |
Sociedade Brasileira de Computação (SBC) |
instacron_str |
SBC |
institution |
SBC |
reponame_str |
Brazilian Journal of Information Systems |
collection |
Brazilian Journal of Information Systems |
repository.name.fl_str_mv |
Brazilian Journal of Information Systems - Sociedade Brasileira de Computação (SBC) |
repository.mail.fl_str_mv |
publicacoes@sbc.org.br |
_version_ |
1832110917158961152 |