On the estimation of robust stability regions for nonlinear systems with saturation
| Main Author: | |
|---|---|
| Publication Date: | 2004 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Sba: Controle & Automação Sociedade Brasileira de Automatica |
| Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
Summary: | This paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach. |
| id |
SBA-2_d4cd9964026eac9faebd694859a7188f |
|---|---|
| oai_identifier_str |
oai:scielo:S0103-17592004000300003 |
| network_acronym_str |
SBA-2 |
| network_name_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
| repository_id_str |
|
| spelling |
On the estimation of robust stability regions for nonlinear systems with saturationNonlinear systemsstability regionuncertaintyconvex optimizationsaturationThis paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach.Sociedade Brasileira de Automática2004-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003Sba: Controle & Automação Sociedade Brasileira de Automatica v.15 n.3 2004reponame:Sba: Controle & Automação Sociedade Brasileira de Automaticainstname:Sociedade Brasileira de Automática (SBA)instacron:SBA10.1590/S0103-17592004000300003info:eu-repo/semantics/openAccessCoutinho,Daniel F.Pagano,Daniel J.Trofino,Alexandreeng2004-11-22T00:00:00Zoai:scielo:S0103-17592004000300003Revistahttps://www.sba.org.br/revista/PUBhttps://old.scielo.br/oai/scielo-oai.php||revista_sba@fee.unicamp.br1807-03450103-1759opendoar:2004-11-22T00:00Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA)false |
| dc.title.none.fl_str_mv |
On the estimation of robust stability regions for nonlinear systems with saturation |
| title |
On the estimation of robust stability regions for nonlinear systems with saturation |
| spellingShingle |
On the estimation of robust stability regions for nonlinear systems with saturation Coutinho,Daniel F. Nonlinear systems stability region uncertainty convex optimization saturation |
| title_short |
On the estimation of robust stability regions for nonlinear systems with saturation |
| title_full |
On the estimation of robust stability regions for nonlinear systems with saturation |
| title_fullStr |
On the estimation of robust stability regions for nonlinear systems with saturation |
| title_full_unstemmed |
On the estimation of robust stability regions for nonlinear systems with saturation |
| title_sort |
On the estimation of robust stability regions for nonlinear systems with saturation |
| author |
Coutinho,Daniel F. |
| author_facet |
Coutinho,Daniel F. Pagano,Daniel J. Trofino,Alexandre |
| author_role |
author |
| author2 |
Pagano,Daniel J. Trofino,Alexandre |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Coutinho,Daniel F. Pagano,Daniel J. Trofino,Alexandre |
| dc.subject.por.fl_str_mv |
Nonlinear systems stability region uncertainty convex optimization saturation |
| topic |
Nonlinear systems stability region uncertainty convex optimization saturation |
| description |
This paper addresses the problem of determining robust stability regions for a class of nonlinear systems with time-invariant uncertainties subject to actuator saturation. The unforced nonlinear system is represented by differential-algebraic equations where the system matrices are allowed to be rational functions of the state and uncertain parameters, and the saturation nonlinearity is modelled by a sector bound condition. For this class of systems, local stability conditions in terms of linear matrix inequalities are derived based on polynomial Lyapunov functions in which the Lyapunov matrix is a quadratic function of the state and uncertain parameters. To estimate a robust stability region is considered the largest level surface of the Lyapunov function belonging to a given polytopic region of state. A numerical example is used to demonstrate the approach. |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004-09-01 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
| url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-17592004000300003 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
10.1590/S0103-17592004000300003 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
text/html |
| dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
| publisher.none.fl_str_mv |
Sociedade Brasileira de Automática |
| dc.source.none.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica v.15 n.3 2004 reponame:Sba: Controle & Automação Sociedade Brasileira de Automatica instname:Sociedade Brasileira de Automática (SBA) instacron:SBA |
| instname_str |
Sociedade Brasileira de Automática (SBA) |
| instacron_str |
SBA |
| institution |
SBA |
| reponame_str |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
| collection |
Sba: Controle & Automação Sociedade Brasileira de Automatica |
| repository.name.fl_str_mv |
Sba: Controle & Automação Sociedade Brasileira de Automatica - Sociedade Brasileira de Automática (SBA) |
| repository.mail.fl_str_mv |
||revista_sba@fee.unicamp.br |
| _version_ |
1754824564283539456 |