Co-Cr-Mo-W powder obtained by mechanical alloying
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , , , , |
Format: | Article |
Language: | eng |
Source: | Matéria (Rio de Janeiro. Online) |
Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000400326 |
Summary: | ABSTRACT New techniques for manufacturing of biomaterials using additive/substrate manufacturing such as melting laser sintering (SLM) or CAD/CAM milling use micrometric metal powders to build custom parts. CoCrMo alloys are commonly used as biomaterials due to biocompatibility, high corrosion resistance and good mechanical properties. In this work, Cr-Co-based powder was obtained by mechanical alloying of Cr-Co-Mo-W alloy, using different Ball/Powder-Ratios (BPR) and thermal treatments. The powders were deagglomerated and characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Based on SEM micrographs, the particle size analysis was used to compare the particles spheroidizing degree, using Feret’s diameter. The XRD patterns shown Co(solid-solution) as crystalline phase. The results of particles size indicates a decrease of Feret’s diameter in BPR (Ball/Powder-Ratio) from 4:1 to 6:1 understanding that from this ratio there is no significant decrease of this relation but there is an average size increase with losses in morphological aspect. The comparison between atomized powders and powder developed in this work indicates that atomized products present relation close to one which indicates there is uniformity in the particles spherical shape. Comparing ground powders from 6:1 ratio (before and after thermal treatment) there is a considerable decrease of Feret’s diameter being it decreased from 1.75 to 1.4, an increase of about 46% in particles spheroidizing. |
id |
RLAM-1_bbe063093282ac6c71b57ece8e9cb815 |
---|---|
oai_identifier_str |
oai:scielo:S1517-70762020000400326 |
network_acronym_str |
RLAM-1 |
network_name_str |
Matéria (Rio de Janeiro. Online) |
repository_id_str |
|
spelling |
Co-Cr-Mo-W powder obtained by mechanical alloyingCo-Cr-Mo-W alloyHigh-Energy Ball Millingpowder morphologycharacterizationABSTRACT New techniques for manufacturing of biomaterials using additive/substrate manufacturing such as melting laser sintering (SLM) or CAD/CAM milling use micrometric metal powders to build custom parts. CoCrMo alloys are commonly used as biomaterials due to biocompatibility, high corrosion resistance and good mechanical properties. In this work, Cr-Co-based powder was obtained by mechanical alloying of Cr-Co-Mo-W alloy, using different Ball/Powder-Ratios (BPR) and thermal treatments. The powders were deagglomerated and characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Based on SEM micrographs, the particle size analysis was used to compare the particles spheroidizing degree, using Feret’s diameter. The XRD patterns shown Co(solid-solution) as crystalline phase. The results of particles size indicates a decrease of Feret’s diameter in BPR (Ball/Powder-Ratio) from 4:1 to 6:1 understanding that from this ratio there is no significant decrease of this relation but there is an average size increase with losses in morphological aspect. The comparison between atomized powders and powder developed in this work indicates that atomized products present relation close to one which indicates there is uniformity in the particles spherical shape. Comparing ground powders from 6:1 ratio (before and after thermal treatment) there is a considerable decrease of Feret’s diameter being it decreased from 1.75 to 1.4, an increase of about 46% in particles spheroidizing.Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiroem cooperação com a Associação Brasileira do Hidrogênio, ABH22020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000400326Matéria (Rio de Janeiro) v.25 n.4 2020reponame:Matéria (Rio de Janeiro. Online)instname:Matéria (Rio de Janeiro. Online)instacron:RLAM10.1590/s1517-707620200004.1168info:eu-repo/semantics/openAccessHabibe,Alexandre FernandesLins,Jefferson Fabrício CardosoSimba,Bruno GalvãoMagnago,Roberto de OliveiraSá,Luiz Fabiano deSantos,Claudinei doseng2020-12-08T00:00:00Zoai:scielo:S1517-70762020000400326Revistahttp://www.materia.coppe.ufrj.br/https://old.scielo.br/oai/scielo-oai.php||materia@labh2.coppe.ufrj.br1517-70761517-7076opendoar:2020-12-08T00:00Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online)false |
dc.title.none.fl_str_mv |
Co-Cr-Mo-W powder obtained by mechanical alloying |
title |
Co-Cr-Mo-W powder obtained by mechanical alloying |
spellingShingle |
Co-Cr-Mo-W powder obtained by mechanical alloying Habibe,Alexandre Fernandes Co-Cr-Mo-W alloy High-Energy Ball Milling powder morphology characterization |
title_short |
Co-Cr-Mo-W powder obtained by mechanical alloying |
title_full |
Co-Cr-Mo-W powder obtained by mechanical alloying |
title_fullStr |
Co-Cr-Mo-W powder obtained by mechanical alloying |
title_full_unstemmed |
Co-Cr-Mo-W powder obtained by mechanical alloying |
title_sort |
Co-Cr-Mo-W powder obtained by mechanical alloying |
author |
Habibe,Alexandre Fernandes |
author_facet |
Habibe,Alexandre Fernandes Lins,Jefferson Fabrício Cardoso Simba,Bruno Galvão Magnago,Roberto de Oliveira Sá,Luiz Fabiano de Santos,Claudinei dos |
author_role |
author |
author2 |
Lins,Jefferson Fabrício Cardoso Simba,Bruno Galvão Magnago,Roberto de Oliveira Sá,Luiz Fabiano de Santos,Claudinei dos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Habibe,Alexandre Fernandes Lins,Jefferson Fabrício Cardoso Simba,Bruno Galvão Magnago,Roberto de Oliveira Sá,Luiz Fabiano de Santos,Claudinei dos |
dc.subject.por.fl_str_mv |
Co-Cr-Mo-W alloy High-Energy Ball Milling powder morphology characterization |
topic |
Co-Cr-Mo-W alloy High-Energy Ball Milling powder morphology characterization |
description |
ABSTRACT New techniques for manufacturing of biomaterials using additive/substrate manufacturing such as melting laser sintering (SLM) or CAD/CAM milling use micrometric metal powders to build custom parts. CoCrMo alloys are commonly used as biomaterials due to biocompatibility, high corrosion resistance and good mechanical properties. In this work, Cr-Co-based powder was obtained by mechanical alloying of Cr-Co-Mo-W alloy, using different Ball/Powder-Ratios (BPR) and thermal treatments. The powders were deagglomerated and characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Based on SEM micrographs, the particle size analysis was used to compare the particles spheroidizing degree, using Feret’s diameter. The XRD patterns shown Co(solid-solution) as crystalline phase. The results of particles size indicates a decrease of Feret’s diameter in BPR (Ball/Powder-Ratio) from 4:1 to 6:1 understanding that from this ratio there is no significant decrease of this relation but there is an average size increase with losses in morphological aspect. The comparison between atomized powders and powder developed in this work indicates that atomized products present relation close to one which indicates there is uniformity in the particles spherical shape. Comparing ground powders from 6:1 ratio (before and after thermal treatment) there is a considerable decrease of Feret’s diameter being it decreased from 1.75 to 1.4, an increase of about 46% in particles spheroidizing. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000400326 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-70762020000400326 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/s1517-707620200004.1168 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
publisher.none.fl_str_mv |
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro em cooperação com a Associação Brasileira do Hidrogênio, ABH2 |
dc.source.none.fl_str_mv |
Matéria (Rio de Janeiro) v.25 n.4 2020 reponame:Matéria (Rio de Janeiro. Online) instname:Matéria (Rio de Janeiro. Online) instacron:RLAM |
instname_str |
Matéria (Rio de Janeiro. Online) |
instacron_str |
RLAM |
institution |
RLAM |
reponame_str |
Matéria (Rio de Janeiro. Online) |
collection |
Matéria (Rio de Janeiro. Online) |
repository.name.fl_str_mv |
Matéria (Rio de Janeiro. Online) - Matéria (Rio de Janeiro. Online) |
repository.mail.fl_str_mv |
||materia@labh2.coppe.ufrj.br |
_version_ |
1827859084001411072 |