Patterns of genetic diversity in socially structured populations : an individual-based approach

Detalhes bibliográficos
Autor(a) principal: Parreira, Bárbara
Data de Publicação: 2016
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10451/25069
Resumo: Tese de doutoramento, Biologia (Biologia Populacional), Universidade de Lisboa, Faculdade de Ciências, 2016
id RCAP_fe4a882e1d7e678e7d89a5d878b00c59
oai_identifier_str oai:repositorio.ulisboa.pt:10451/25069
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Patterns of genetic diversity in socially structured populations : an individual-based approachEndogamiaPopulaçãoGenética das populaçõesTeses de doutoramento - 2016Domínio/Área Científica::Ciências Naturais::Ciências BiológicasTese de doutoramento, Biologia (Biologia Populacional), Universidade de Lisboa, Faculdade de Ciências, 2016Natural populations consist of spatial aggregations of interacting individuals shaped by geographic, ecological or behavioral factors. Relatively simple models have been proposed in population genetics to study how this subdivision affects the genetic diversity and persistence of populations in discontinued landscapes. Classical population genetic models view populations as networks of discrete entities (wherein mating occurs at random – demes) connected by migration. These models have demonstrated that population subdivision has implications on the effective population size, mean coalescence time and genetic variation. Although, in many species, demes are further subdivided into age-structured groups of individuals with complex mating strategies, social-structure has received little attention. This thesis focus on the genetic consequences of social structure. In particular, we asked whether social structure leads to genetic patterns that differ from those predicted by classical models, and to which extent ignoring social structure can bias inferences from real populations. An individual-based simulation framework was developed to investigate the effects of sex-biased dispersal and complex mating systems on genotypic frequencies, genetic diversity and gene genealogies. We found that social structure leads to an excess of heterozygotes within social groups (outbreeding) that is not detected when social groups are ignored (common practice in many empirical studies). Furthermore, we show that incorrect conclusions about inbreeding or random-mating may be drawn if social structure is not explicitly taken into account. This framework was applied to study a social species, the lemur Propithecus tattersalli. Simulations fitted the empirical results indicating that, in this species, social subdivision decreases inbreeding to a great extent. This allows this species to maintain high levels of individual diversity in its highly fragmented habitat and these results may be important for other endangered species. This study has also shown that social structure may bias inferences of past demographic events, often leading to spurious signals of expansions rather than bottlenecks. This work contributed to a better understanding of the effects of sociality, showing that social structure shapes the genetic diversity of populations in ways that cannot be predicted by classical genetic models.LABEX (Laboratoires d’Excellence), projeto TULIP (ANR-10-LABX-41); LIA BEEG-B (Laboratoire International Associé - Bioinformatics, Ecology, Evolution, Genomics and Behaviour; CNRS (Centre International de la Recherche Scientifique)Chikhi, LounèsGomes, Manuel do Carmo, 1957-Repositório da Universidade de LisboaParreira, Bárbara2016-11-17T17:02:11Z201620162016-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/25069TID:101325355enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T13:31:59Zoai:repositorio.ulisboa.pt:10451/25069Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T02:47:14.479998Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Patterns of genetic diversity in socially structured populations : an individual-based approach
title Patterns of genetic diversity in socially structured populations : an individual-based approach
spellingShingle Patterns of genetic diversity in socially structured populations : an individual-based approach
Parreira, Bárbara
Endogamia
População
Genética das populações
Teses de doutoramento - 2016
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
title_short Patterns of genetic diversity in socially structured populations : an individual-based approach
title_full Patterns of genetic diversity in socially structured populations : an individual-based approach
title_fullStr Patterns of genetic diversity in socially structured populations : an individual-based approach
title_full_unstemmed Patterns of genetic diversity in socially structured populations : an individual-based approach
title_sort Patterns of genetic diversity in socially structured populations : an individual-based approach
author Parreira, Bárbara
author_facet Parreira, Bárbara
author_role author
dc.contributor.none.fl_str_mv Chikhi, Lounès
Gomes, Manuel do Carmo, 1957-
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Parreira, Bárbara
dc.subject.por.fl_str_mv Endogamia
População
Genética das populações
Teses de doutoramento - 2016
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
topic Endogamia
População
Genética das populações
Teses de doutoramento - 2016
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
description Tese de doutoramento, Biologia (Biologia Populacional), Universidade de Lisboa, Faculdade de Ciências, 2016
publishDate 2016
dc.date.none.fl_str_mv 2016-11-17T17:02:11Z
2016
2016
2016-01-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/25069
TID:101325355
url http://hdl.handle.net/10451/25069
identifier_str_mv TID:101325355
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601481098395648