Improving SeNA-CNN by Automating Task Recognition

Bibliographic Details
Main Author: Zacarias, Abel
Publication Date: 2018
Other Authors: Alexandre, Luís
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.6/8145
Summary: Catastrophic forgetting arises when a neural network is not capable of preserving the past learned task when learning a new task. There are already some methods proposed to mitigate this problem in arti cial neural networks. In this paper we propose to improve upon our previous state-of-the-art method, SeNA-CNN, such as to enable the automatic recognition in test time of the task to be solved and we experimentally show that it has excellent results. The experiments show the learning of up to 4 di erent tasks with a single network, without forgetting how to solve previous learned tasks.
id RCAP_fd2acfee112bc39408f2726d59c97a86
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/8145
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Improving SeNA-CNN by Automating Task RecognitionSupervised LearningLifelong learningCatastrophic ForgettingConvolutional Neural NetworksCatastrophic forgetting arises when a neural network is not capable of preserving the past learned task when learning a new task. There are already some methods proposed to mitigate this problem in arti cial neural networks. In this paper we propose to improve upon our previous state-of-the-art method, SeNA-CNN, such as to enable the automatic recognition in test time of the task to be solved and we experimentally show that it has excellent results. The experiments show the learning of up to 4 di erent tasks with a single network, without forgetting how to solve previous learned tasks.uBibliorumZacarias, AbelAlexandre, Luís2020-01-09T10:37:01Z20182018-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.6/8145eng10.1007/978-3-030-03493-1_74info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T15:10:41Zoai:ubibliorum.ubi.pt:10400.6/8145Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:24:03.241609Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Improving SeNA-CNN by Automating Task Recognition
title Improving SeNA-CNN by Automating Task Recognition
spellingShingle Improving SeNA-CNN by Automating Task Recognition
Zacarias, Abel
Supervised Learning
Lifelong learning
Catastrophic Forgetting
Convolutional Neural Networks
title_short Improving SeNA-CNN by Automating Task Recognition
title_full Improving SeNA-CNN by Automating Task Recognition
title_fullStr Improving SeNA-CNN by Automating Task Recognition
title_full_unstemmed Improving SeNA-CNN by Automating Task Recognition
title_sort Improving SeNA-CNN by Automating Task Recognition
author Zacarias, Abel
author_facet Zacarias, Abel
Alexandre, Luís
author_role author
author2 Alexandre, Luís
author2_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Zacarias, Abel
Alexandre, Luís
dc.subject.por.fl_str_mv Supervised Learning
Lifelong learning
Catastrophic Forgetting
Convolutional Neural Networks
topic Supervised Learning
Lifelong learning
Catastrophic Forgetting
Convolutional Neural Networks
description Catastrophic forgetting arises when a neural network is not capable of preserving the past learned task when learning a new task. There are already some methods proposed to mitigate this problem in arti cial neural networks. In this paper we propose to improve upon our previous state-of-the-art method, SeNA-CNN, such as to enable the automatic recognition in test time of the task to be solved and we experimentally show that it has excellent results. The experiments show the learning of up to 4 di erent tasks with a single network, without forgetting how to solve previous learned tasks.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2020-01-09T10:37:01Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/8145
url http://hdl.handle.net/10400.6/8145
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-030-03493-1_74
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600963019014144