Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

Detalhes bibliográficos
Autor(a) principal: Dias, L.G.
Data de Publicação: 2016
Outros Autores: Rodrigues, Nuno, Veloso, Ana C.A., Pereira, J.A., Peres, António M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/12837
Resumo: Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactory–gustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
id RCAP_fd15bcc9bd5e072cf7f0cd4b829900cd
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/12837
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongueSingle-cultivar extra-virgin olive oilSensory analysisPotentiometric electronic tongueLinear multivariate methodsSimulated annealing algorithmOlive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactory–gustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.Biblioteca Digital do IPBDias, L.G.Rodrigues, NunoVeloso, Ana C.A.Pereira, J.A.Peres, António M.2016-03-29T16:59:06Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/12837engDias, L.G.; Rodrigues, Nuno; Veloso, Ana C.A.; Pereira, J.A.; Peres, António M. (2016). Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology. ISSN 1438-2377. 242:2, p. 259–2701438-237710.1007/s00217-015-2537-4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:03:24Zoai:bibliotecadigital.ipb.pt:10198/12837Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:29:23.602273Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
spellingShingle Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
Dias, L.G.
Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
title_short Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_full Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_fullStr Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_full_unstemmed Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_sort Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
author Dias, L.G.
author_facet Dias, L.G.
Rodrigues, Nuno
Veloso, Ana C.A.
Pereira, J.A.
Peres, António M.
author_role author
author2 Rodrigues, Nuno
Veloso, Ana C.A.
Pereira, J.A.
Peres, António M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Dias, L.G.
Rodrigues, Nuno
Veloso, Ana C.A.
Pereira, J.A.
Peres, António M.
dc.subject.por.fl_str_mv Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
topic Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
description Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactory–gustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-29T16:59:06Z
2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/12837
url http://hdl.handle.net/10198/12837
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Dias, L.G.; Rodrigues, Nuno; Veloso, Ana C.A.; Pereira, J.A.; Peres, António M. (2016). Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology. ISSN 1438-2377. 242:2, p. 259–270
1438-2377
10.1007/s00217-015-2537-4
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591950268170240