Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report
Main Author: | |
---|---|
Publication Date: | 2016 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/19789 |
Summary: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
id |
RCAP_fcd6bea253da308d7d06bcc8b0ea923e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/19789 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship reportCustomer segmentationClusteringK-meansUnsupervised learningSegmentationInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced AnalyticsClustering is one of the most frequently applied techniques in machine learning. An overview of the most comon algorithms, problems and solutions is provided in this report. In modern times, customer information is a curtail success factor in the insurance industry. This work describes a way how customer data can be leveraged in order to provide useful insights that help driving business in a more profitable way. It is shown that the available data can serve as a base for customer segmentation on which further models can be built upon. The customer is investigated in three dimensions (demographic, behavior, and value) that are crossed to gain precise information about customer segments.Castelli, MauroRUNBucker, Thies2017-01-16T14:43:03Z2016-10-252016-10-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/19789TID:201270994enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:24:23Zoai:run.unl.pt:10362/19789Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:55:19.562436Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
spellingShingle |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report Bucker, Thies Customer segmentation Clustering K-means Unsupervised learning Segmentation |
title_short |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_full |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_fullStr |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_full_unstemmed |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
title_sort |
Costumer clustering in the insurance sector by means of unsupervised machine learning : an internship report |
author |
Bucker, Thies |
author_facet |
Bucker, Thies |
author_role |
author |
dc.contributor.none.fl_str_mv |
Castelli, Mauro RUN |
dc.contributor.author.fl_str_mv |
Bucker, Thies |
dc.subject.por.fl_str_mv |
Customer segmentation Clustering K-means Unsupervised learning Segmentation |
topic |
Customer segmentation Clustering K-means Unsupervised learning Segmentation |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-25 2016-10-25T00:00:00Z 2017-01-16T14:43:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/19789 TID:201270994 |
url |
http://hdl.handle.net/10362/19789 |
identifier_str_mv |
TID:201270994 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596297231204352 |