Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/10316/103187 https://doi.org/10.3390/biology11040532 |
Resumo: | Age-at-death assessment is a crucial step in the identification process of skeletal human remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-estimation, in this work we propose a new method based on a multifactorial macroscopic analysis and deep random neural network models. A sample of 500 identified skeletons was used to establish a reference dataset (age-at-death: 19-101 years old, 250 males and 250 females). A total of 64 skeletal traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from a function approximation perspective and a regression approach is used to infer both point and prediction interval estimates. Based on cross-validation and computational experiments, our results demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute error) inferred across the entire adult age span and informative estimates and prediction intervals can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to the community. |
id |
RCAP_fcabdd2490d0c05ed59f403304e64a2d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/103187 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysisforensic anthropologyage-at-death estimationmachine learningneural networksAge-at-death assessment is a crucial step in the identification process of skeletal human remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-estimation, in this work we propose a new method based on a multifactorial macroscopic analysis and deep random neural network models. A sample of 500 identified skeletons was used to establish a reference dataset (age-at-death: 19-101 years old, 250 males and 250 females). A total of 64 skeletal traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from a function approximation perspective and a regression approach is used to infer both point and prediction interval estimates. Based on cross-validation and computational experiments, our results demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute error) inferred across the entire adult age span and informative estimates and prediction intervals can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to the community.This research was funded by Fundação para a Ciência e Tecnologia, grant number SFRH/BD/99676/2014.2022-03-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/103187https://hdl.handle.net/10316/103187https://doi.org/10.3390/biology11040532eng2079-7737Navega, DavidCosta, ErnestoCunha, Eugéniainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-12T15:44:59Zoai:estudogeral.uc.pt:10316/103187Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:53:06.412972Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
title |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
spellingShingle |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis Navega, David forensic anthropology age-at-death estimation machine learning neural networks |
title_short |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
title_full |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
title_fullStr |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
title_full_unstemmed |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
title_sort |
Adult Skeletal Age-at-Death Estimation through Deep Random Neural Networks: A New Method and Its Computational Analysis |
author |
Navega, David |
author_facet |
Navega, David Costa, Ernesto Cunha, Eugénia |
author_role |
author |
author2 |
Costa, Ernesto Cunha, Eugénia |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Navega, David Costa, Ernesto Cunha, Eugénia |
dc.subject.por.fl_str_mv |
forensic anthropology age-at-death estimation machine learning neural networks |
topic |
forensic anthropology age-at-death estimation machine learning neural networks |
description |
Age-at-death assessment is a crucial step in the identification process of skeletal human remains. Nonetheless, in adult individuals this task is particularly difficult to achieve with reasonable accuracy due to high variability in the senescence processes. To improve the accuracy of age-at-estimation, in this work we propose a new method based on a multifactorial macroscopic analysis and deep random neural network models. A sample of 500 identified skeletons was used to establish a reference dataset (age-at-death: 19-101 years old, 250 males and 250 females). A total of 64 skeletal traits are covered in the proposed macroscopic technique. Age-at-death estimation is tackled from a function approximation perspective and a regression approach is used to infer both point and prediction interval estimates. Based on cross-validation and computational experiments, our results demonstrate that age estimation from skeletal remains can be accurately (~6 years mean absolute error) inferred across the entire adult age span and informative estimates and prediction intervals can be obtained for the elderly population. A novel software tool, DRNNAGE, was made available to the community. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/103187 https://hdl.handle.net/10316/103187 https://doi.org/10.3390/biology11040532 |
url |
https://hdl.handle.net/10316/103187 https://doi.org/10.3390/biology11040532 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2079-7737 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602505265643520 |