Export Ready — 

Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector

Bibliographic Details
Main Author: Santos, S. P. Amor dos
Publication Date: 2016
Other Authors: Carvalho, J., Fiolhais, M. C. N., Galhardo, B., Veloso, F., Wolters, H., ATLAS Collaboration
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/108646
https://doi.org/10.1007/JHEP09(2016)001
Summary: Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on proton-proton collision data corresponding to an integrated luminosity of 3.2 fb−1 at s=13 TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13 TeV and 8 TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported.
id RCAP_fc4d652832efeb07575d0d08b2062d70
oai_identifier_str oai:estudogeral.uc.pt:10316/108646
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Search for resonances in diphoton events at √s=13 TeV with the ATLAS detectorBeyond Standard ModelHadron-Hadron scattering (experiments)Hard scatteringParticle and resonance productionproton-proton scatteringSearches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on proton-proton collision data corresponding to an integrated luminosity of 3.2 fb−1 at s=13 TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13 TeV and 8 TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported.We thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, R egion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [62].Springer Nature2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/108646https://hdl.handle.net/10316/108646https://doi.org/10.1007/JHEP09(2016)001engSantos, S. P. Amor dosCarvalho, J.Fiolhais, M. C. N.Galhardo, B.Veloso, F.Wolters, H.ATLAS Collaborationinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2023-09-06T10:47:32Zoai:estudogeral.uc.pt:10316/108646Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:00:01.375190Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
title Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
spellingShingle Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
Santos, S. P. Amor dos
Beyond Standard Model
Hadron-Hadron scattering (experiments)
Hard scattering
Particle and resonance production
proton-proton scattering
title_short Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
title_full Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
title_fullStr Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
title_full_unstemmed Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
title_sort Search for resonances in diphoton events at √s=13 TeV with the ATLAS detector
author Santos, S. P. Amor dos
author_facet Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author_role author
author2 Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, S. P. Amor dos
Carvalho, J.
Fiolhais, M. C. N.
Galhardo, B.
Veloso, F.
Wolters, H.
ATLAS Collaboration
dc.subject.por.fl_str_mv Beyond Standard Model
Hadron-Hadron scattering (experiments)
Hard scattering
Particle and resonance production
proton-proton scattering
topic Beyond Standard Model
Hadron-Hadron scattering (experiments)
Hard scattering
Particle and resonance production
proton-proton scattering
description Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on proton-proton collision data corresponding to an integrated luminosity of 3.2 fb−1 at s=13 TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13 TeV and 8 TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/108646
https://hdl.handle.net/10316/108646
https://doi.org/10.1007/JHEP09(2016)001
url https://hdl.handle.net/10316/108646
https://doi.org/10.1007/JHEP09(2016)001
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602543411789824