Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/15483 |
Summary: | Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms. |
id |
RCAP_fafe3f1c2a00cd94e7baa67e0d86bc44 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/15483 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítimaData aggregationMulti-Target TrackingKalman filterAutonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms.Martins, Alfredo Manuel OliveiraREPOSITÓRIO P.PORTOFreire, Daniel da Silva2020-02-17T15:31:15Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/15483urn:tid:202342611porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:00:14Zoai:recipp.ipp.pt:10400.22/15483Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:25:23.035544Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
spellingShingle |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima Freire, Daniel da Silva Data aggregation Multi-Target Tracking Kalman filter |
title_short |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_full |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_fullStr |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_full_unstemmed |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
title_sort |
Sistema de deteção e monitorização de obstáculos para navegação autónoma marítima |
author |
Freire, Daniel da Silva |
author_facet |
Freire, Daniel da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Martins, Alfredo Manuel Oliveira REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Freire, Daniel da Silva |
dc.subject.por.fl_str_mv |
Data aggregation Multi-Target Tracking Kalman filter |
topic |
Data aggregation Multi-Target Tracking Kalman filter |
description |
Autonomous Surface Vehicles (ASVs), operating near ship harbors or relatively close to shorelines must be able to steer away from incoming vessels and other possible obstacles, be they dynamic or not. To do this, one must implement some type of multi-target tracking and obstacle avoidance algorithms that lets the vehicle dodge obstacles. This thesis presents a radar-based multi-target tracking system developed for obstacle detection and monitoring. The proposed architecture system can use different types of sensors to improve the quality of the data. This work is focused in the radar sensor. The system was designed for ROAZ II ASV belonging to INESC TEC/ISEP and implemented in Robot Operating System (ROS) for easier integration with the already existing software. The developed aggregation, classification and tracking algorithms are presented, as well as the algorithm for estimation of possible collisions between vessels. Aggregation and classification algorithms were tested with real data and the results are presented in this work. A simulation environment could prove the correct behavior of tracking and estimation of possible collisions algorithms. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2020-02-17T15:31:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/15483 urn:tid:202342611 |
url |
http://hdl.handle.net/10400.22/15483 |
identifier_str_mv |
urn:tid:202342611 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600527734145024 |