Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde

Detalhes bibliográficos
Autor(a) principal: Kuş, Nihal
Data de Publicação: 2010
Outros Autores: Reva, Igor, Fausto, Rui
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/18077
https://doi.org/10.1021/jp1079839
Resumo: 3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O═C—C═C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol−1 more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol−1 from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion 7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C3H4 isomers: cyclopropene and propadiene.
id RCAP_fa03f0a15340aea9f90fbb85b3e2c4f7
oai_identifier_str oai:estudogeral.uc.pt:10316/18077
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O═C—C═C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol−1 more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol−1 from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion 7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C3H4 isomers: cyclopropene and propadiene.American Chemical Society2010-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/18077https://hdl.handle.net/10316/18077https://doi.org/10.1021/jp1079839engKuş, NihalReva, IgorFausto, Ruiinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2021-09-16T08:21:00Zoai:estudogeral.uc.pt:10316/18077Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:24:25.515724Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
title Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
spellingShingle Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
Kuş, Nihal
title_short Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
title_full Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
title_fullStr Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
title_full_unstemmed Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
title_sort Photoisomerization and Photochemistry of Matrix-Isolated 3-Furaldehyde
author Kuş, Nihal
author_facet Kuş, Nihal
Reva, Igor
Fausto, Rui
author_role author
author2 Reva, Igor
Fausto, Rui
author2_role author
author
dc.contributor.author.fl_str_mv Kuş, Nihal
Reva, Igor
Fausto, Rui
description 3-Furaldehyde (3FA) was isolated in an argon matrix at 12 K and studied using FTIR spectroscopy and quantum chemistry. The molecule has two conformers, with trans and cis orientation of the O═C—C═C dihedral angle. At the B3LYP/6-311++G(d,p) level of theory, the trans form was computed to be ca. 4 kJ mol−1 more stable than the cis form. The relative stability of the two conformers was explained using the natural bond orbital (NBO) method. In fair agreement with their calculated relative energies and the high barrier of rotamerization (ca. 34 kJ mol−1 from trans to cis), the trans and cis conformers were trapped in an argon matrix from the compound room temperature gas phase in proportion 7:1. The experimentally observed vibrational signatures of the two forms are in a good agreement with the theoretically calculated spectra. Broad-band UV-irradiation (λ > 234 nm) of the matrix-isolated compound resulted in partial trans → cis isomerization, which ended at a photostationary state with the trans/cis ratio being ca. 1.85:1. This result was interpreted based on results of time-dependent DFT calculations. Irradiation at higher energies (λ > 200 nm) led to decarbonylation of the compound, yielding furan, cyclopropene-3-carbaldehyde, and two C3H4 isomers: cyclopropene and propadiene.
publishDate 2010
dc.date.none.fl_str_mv 2010-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/18077
https://hdl.handle.net/10316/18077
https://doi.org/10.1021/jp1079839
url https://hdl.handle.net/10316/18077
https://doi.org/10.1021/jp1079839
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602344588148736