On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals

Bibliographic Details
Main Author: Teixeira, Ana
Publication Date: 2006
Other Authors: Tome, A., Lang, E., Schachtner, R., Stadlthanner, K.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/47391
Summary: Kernel principal component analysis(KPCA) is a nonlinear projective technique that can be applied to decompose multi-dimensional signals and extract informative features as well as reduce any noise contributions. In this work we extend KPCA to extract and remove artifact-related contributions as well as noise from one-dimensional signal recordings. We introduce an embedding step which transforms the one-dimensional signal into a multi-dimensional vector. The latter is decomposed in feature space to extract artifact related contaminations. We further address the preimage problem and propose an initialization procedure to the fixed-point algorithm which renders it more efficient. Finally we apply KPCA to extract dominant Electrooculogram (EOG) artifacts contaminating Electroencephalogram (EEG) recordings in a frontal channel.
id RCAP_f93db0eeb8b039e9885a708996e4e142
oai_identifier_str oai:comum.rcaap.pt:10400.26/47391
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical SignalsKernel principal component analysis(KPCA) is a nonlinear projective technique that can be applied to decompose multi-dimensional signals and extract informative features as well as reduce any noise contributions. In this work we extend KPCA to extract and remove artifact-related contributions as well as noise from one-dimensional signal recordings. We introduce an embedding step which transforms the one-dimensional signal into a multi-dimensional vector. The latter is decomposed in feature space to extract artifact related contaminations. We further address the preimage problem and propose an initialization procedure to the fixed-point algorithm which renders it more efficient. Finally we apply KPCA to extract dominant Electrooculogram (EOG) artifacts contaminating Electroencephalogram (EEG) recordings in a frontal channel.[IEEE]Repositório ComumTeixeira, AnaTome, A.Lang, E.Schachtner, R.Stadlthanner, K.2023-10-23T10:20:18Z20062006-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/47391eng10.1109/MLSP.2006.275580info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T11:24:59Zoai:comum.rcaap.pt:10400.26/47391Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:45:12.039628Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
title On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
spellingShingle On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
Teixeira, Ana
title_short On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
title_full On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
title_fullStr On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
title_full_unstemmed On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
title_sort On the Use of KPCA to Extract Artifacts in One-Dimensional Biomedical Signals
author Teixeira, Ana
author_facet Teixeira, Ana
Tome, A.
Lang, E.
Schachtner, R.
Stadlthanner, K.
author_role author
author2 Tome, A.
Lang, E.
Schachtner, R.
Stadlthanner, K.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Teixeira, Ana
Tome, A.
Lang, E.
Schachtner, R.
Stadlthanner, K.
description Kernel principal component analysis(KPCA) is a nonlinear projective technique that can be applied to decompose multi-dimensional signals and extract informative features as well as reduce any noise contributions. In this work we extend KPCA to extract and remove artifact-related contributions as well as noise from one-dimensional signal recordings. We introduce an embedding step which transforms the one-dimensional signal into a multi-dimensional vector. The latter is decomposed in feature space to extract artifact related contaminations. We further address the preimage problem and propose an initialization procedure to the fixed-point algorithm which renders it more efficient. Finally we apply KPCA to extract dominant Electrooculogram (EOG) artifacts contaminating Electroencephalogram (EEG) recordings in a frontal channel.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
2023-10-23T10:20:18Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/47391
url http://hdl.handle.net/10400.26/47391
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/MLSP.2006.275580
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv [IEEE]
publisher.none.fl_str_mv [IEEE]
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602773660205056