Sparse analyzer tool for biomedical signals
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/120347 |
Summary: | IF/00325/2015 PCIF/SSI/0102/2017 UIDB/04111/2020 |
id |
RCAP_d6a2051d0a45e58cc40ff0ac8c3d8517 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/120347 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Sparse analyzer tool for biomedical signalsBiomedical signalsCompressive sensingConcentration measureGradient algorithmOMPSIRASparse signal processingStatistical analyzerTV minimizationVirtual instrumentAnalytical ChemistryBiochemistryAtomic and Molecular Physics, and OpticsInstrumentationElectrical and Electronic EngineeringIF/00325/2015 PCIF/SSI/0102/2017 UIDB/04111/2020The virtual (software) instrument with a statistical analyzer for testing algorithms for biomedical signals’ recovery in compressive sensing (CS) scenario is presented. Various CS reconstruction algorithms are implemented with the aim to be applicable for different types of biomedical signals and different applications with under-sampled data. Incomplete sampling/sensing can be considered as a sort of signal damage, where missing data can occur as a result of noise or the incomplete signal acquisition procedure. Many approaches for recovering the missing signal parts have been developed, depending on the signal nature. Here, several approaches and their applications are presented for medical signals and images. The possibility to analyze results using different statistical parameters is provided, with the aim to choose the most suitable approach for a specific application. The instrument provides manifold possibilities such as fitting different parameters for the considered signal and testing the efficiency under different percentages of missing data. The reconstruction accuracy is measured by the mean square error (MSE) between original and reconstructed signal. Computational time is important from the aspect of power requirements, thus enabling the selection of a suitable algorithm. The instrument contains its own signal database, but there is also the possibility to load any external data for analysis.UNINOVA-Instituto de Desenvolvimento de Novas TecnologiasRUNVujović, StefanDraganić, AndjelaŽarić, Maja LakičevićOrović, IrenaDaković, MilošBeko, MarkoStanković, Srdjan2021-07-01T22:19:04Z2020-05-022020-05-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/120347eng1424-8220PURE: 32291391https://doi.org/10.3390/s20092602info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:54:19Zoai:run.unl.pt:10362/120347Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:25:17.770110Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Sparse analyzer tool for biomedical signals |
title |
Sparse analyzer tool for biomedical signals |
spellingShingle |
Sparse analyzer tool for biomedical signals Vujović, Stefan Biomedical signals Compressive sensing Concentration measure Gradient algorithm OMP SIRA Sparse signal processing Statistical analyzer TV minimization Virtual instrument Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
title_short |
Sparse analyzer tool for biomedical signals |
title_full |
Sparse analyzer tool for biomedical signals |
title_fullStr |
Sparse analyzer tool for biomedical signals |
title_full_unstemmed |
Sparse analyzer tool for biomedical signals |
title_sort |
Sparse analyzer tool for biomedical signals |
author |
Vujović, Stefan |
author_facet |
Vujović, Stefan Draganić, Andjela Žarić, Maja Lakičević Orović, Irena Daković, Miloš Beko, Marko Stanković, Srdjan |
author_role |
author |
author2 |
Draganić, Andjela Žarić, Maja Lakičević Orović, Irena Daković, Miloš Beko, Marko Stanković, Srdjan |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
UNINOVA-Instituto de Desenvolvimento de Novas Tecnologias RUN |
dc.contributor.author.fl_str_mv |
Vujović, Stefan Draganić, Andjela Žarić, Maja Lakičević Orović, Irena Daković, Miloš Beko, Marko Stanković, Srdjan |
dc.subject.por.fl_str_mv |
Biomedical signals Compressive sensing Concentration measure Gradient algorithm OMP SIRA Sparse signal processing Statistical analyzer TV minimization Virtual instrument Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
topic |
Biomedical signals Compressive sensing Concentration measure Gradient algorithm OMP SIRA Sparse signal processing Statistical analyzer TV minimization Virtual instrument Analytical Chemistry Biochemistry Atomic and Molecular Physics, and Optics Instrumentation Electrical and Electronic Engineering |
description |
IF/00325/2015 PCIF/SSI/0102/2017 UIDB/04111/2020 |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-02 2020-05-02T00:00:00Z 2021-07-01T22:19:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/120347 |
url |
http://hdl.handle.net/10362/120347 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1424-8220 PURE: 32291391 https://doi.org/10.3390/s20092602 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596684393775104 |