Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration

Bibliographic Details
Main Author: Silva-Correia, Joana
Publication Date: 2012
Other Authors: Zavan, B., Vindigni, V., Oliveira, Mariana B., Mano, J. F., Pereira, H., Oliveira, Joaquim M., Mendes, João Espregueira, Abatangelo, G., Reis, R. L.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/23147
Summary: Methacrylated gellan gum hydrogels, obtained either by ionic- (iGGMA) and photo-crosslinking (phGG-MA), have been investigated as potential biomaterials for supporting nucleus pulposus (NP) regeneration and/or repair [1,2]. In previous work, some advantages were attributed to GG-MA hydrogels, such as: (i) the possibility to control endothelial cells infiltration and blood vessel ingrowth’s, (ii) tunable and improved mechanical properties, and (iii) in situ gelation, within seconds to few minutes. In this study, the mechanical and biological performance of these hydrogels was firstly evaluated in vitro. Human intervertebral disc (hIVD) cells obtained from herniated patients were cultured within both hydrogels, for 1 up to 21 days. Dynamic mechanical analysis and biological characterization (calcein-AM staining, ATP and DNA quantification and PCR) were performed after specific times of culturing. A biocompatibility study was also performed in vivo, by subcutaneous implantation of acellular iGG-MA and phGG-MA hydrogels in Lewis rats for the period of 10 and 18 days. Tissue response to the hydrogels implantation was determined by histological analysis (haematoxylin-eosin staining). The in vitro study showed that both cell loading and culturing time do not have an effect on the mechanical properties of the hydrogels. Regarding their biological performance, the iGG-MA and phGG-MA hydrogels showed to be effective on supporting hIVD cells encapsulation and viability up to 21 days of culturing. Human IVD cells were homogeneously distributed within the hydrogels and maintained its round-shape morphology during culturing time. The in vivo biocompatibility study showed that iGG-MA and phGG-MA hydrogels do not elicit any deleterious effect, as denoted by the absence of necrosis and calcification, or acute inflammatory reaction. A thin fibrous capsule was observed around the implanted hydrogels. The results presented in this study indicate that the iGG-MA and phGG-MA hydrogels are stable in vitro and in vivo, support hIVD cells encapsulation and viability, and were found to be well-tolerated and non-cytotoxic in vivo, thus being potential candidates for NP regeneration.
id RCAP_f7d1b0b6f1ac50f1be88db2056e158cb
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/23147
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regenerationBiocompatibility in vivoMethacrylated gellan gumScience & TechnologyMethacrylated gellan gum hydrogels, obtained either by ionic- (iGGMA) and photo-crosslinking (phGG-MA), have been investigated as potential biomaterials for supporting nucleus pulposus (NP) regeneration and/or repair [1,2]. In previous work, some advantages were attributed to GG-MA hydrogels, such as: (i) the possibility to control endothelial cells infiltration and blood vessel ingrowth’s, (ii) tunable and improved mechanical properties, and (iii) in situ gelation, within seconds to few minutes. In this study, the mechanical and biological performance of these hydrogels was firstly evaluated in vitro. Human intervertebral disc (hIVD) cells obtained from herniated patients were cultured within both hydrogels, for 1 up to 21 days. Dynamic mechanical analysis and biological characterization (calcein-AM staining, ATP and DNA quantification and PCR) were performed after specific times of culturing. A biocompatibility study was also performed in vivo, by subcutaneous implantation of acellular iGG-MA and phGG-MA hydrogels in Lewis rats for the period of 10 and 18 days. Tissue response to the hydrogels implantation was determined by histological analysis (haematoxylin-eosin staining). The in vitro study showed that both cell loading and culturing time do not have an effect on the mechanical properties of the hydrogels. Regarding their biological performance, the iGG-MA and phGG-MA hydrogels showed to be effective on supporting hIVD cells encapsulation and viability up to 21 days of culturing. Human IVD cells were homogeneously distributed within the hydrogels and maintained its round-shape morphology during culturing time. The in vivo biocompatibility study showed that iGG-MA and phGG-MA hydrogels do not elicit any deleterious effect, as denoted by the absence of necrosis and calcification, or acute inflammatory reaction. A thin fibrous capsule was observed around the implanted hydrogels. The results presented in this study indicate that the iGG-MA and phGG-MA hydrogels are stable in vitro and in vivo, support hIVD cells encapsulation and viability, and were found to be well-tolerated and non-cytotoxic in vivo, thus being potential candidates for NP regeneration.John Wiley and SonsUniversidade do MinhoSilva-Correia, JoanaZavan, B.Vindigni, V.Oliveira, Mariana B.Mano, J. F.Pereira, H.Oliveira, Joaquim M.Mendes, João EspregueiraAbatangelo, G.Reis, R. L.2012-102012-10-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/23147eng1932-6254info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:37:49Zoai:repositorium.sdum.uminho.pt:1822/23147Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:53:47.503099Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
title Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
spellingShingle Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
Silva-Correia, Joana
Biocompatibility in vivo
Methacrylated gellan gum
Science & Technology
title_short Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
title_full Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
title_fullStr Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
title_full_unstemmed Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
title_sort Mechanical performance and biocompatibility study of methacrylated Gellan gum hydrogels with potential for nucleus pulposus regeneration
author Silva-Correia, Joana
author_facet Silva-Correia, Joana
Zavan, B.
Vindigni, V.
Oliveira, Mariana B.
Mano, J. F.
Pereira, H.
Oliveira, Joaquim M.
Mendes, João Espregueira
Abatangelo, G.
Reis, R. L.
author_role author
author2 Zavan, B.
Vindigni, V.
Oliveira, Mariana B.
Mano, J. F.
Pereira, H.
Oliveira, Joaquim M.
Mendes, João Espregueira
Abatangelo, G.
Reis, R. L.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Silva-Correia, Joana
Zavan, B.
Vindigni, V.
Oliveira, Mariana B.
Mano, J. F.
Pereira, H.
Oliveira, Joaquim M.
Mendes, João Espregueira
Abatangelo, G.
Reis, R. L.
dc.subject.por.fl_str_mv Biocompatibility in vivo
Methacrylated gellan gum
Science & Technology
topic Biocompatibility in vivo
Methacrylated gellan gum
Science & Technology
description Methacrylated gellan gum hydrogels, obtained either by ionic- (iGGMA) and photo-crosslinking (phGG-MA), have been investigated as potential biomaterials for supporting nucleus pulposus (NP) regeneration and/or repair [1,2]. In previous work, some advantages were attributed to GG-MA hydrogels, such as: (i) the possibility to control endothelial cells infiltration and blood vessel ingrowth’s, (ii) tunable and improved mechanical properties, and (iii) in situ gelation, within seconds to few minutes. In this study, the mechanical and biological performance of these hydrogels was firstly evaluated in vitro. Human intervertebral disc (hIVD) cells obtained from herniated patients were cultured within both hydrogels, for 1 up to 21 days. Dynamic mechanical analysis and biological characterization (calcein-AM staining, ATP and DNA quantification and PCR) were performed after specific times of culturing. A biocompatibility study was also performed in vivo, by subcutaneous implantation of acellular iGG-MA and phGG-MA hydrogels in Lewis rats for the period of 10 and 18 days. Tissue response to the hydrogels implantation was determined by histological analysis (haematoxylin-eosin staining). The in vitro study showed that both cell loading and culturing time do not have an effect on the mechanical properties of the hydrogels. Regarding their biological performance, the iGG-MA and phGG-MA hydrogels showed to be effective on supporting hIVD cells encapsulation and viability up to 21 days of culturing. Human IVD cells were homogeneously distributed within the hydrogels and maintained its round-shape morphology during culturing time. The in vivo biocompatibility study showed that iGG-MA and phGG-MA hydrogels do not elicit any deleterious effect, as denoted by the absence of necrosis and calcification, or acute inflammatory reaction. A thin fibrous capsule was observed around the implanted hydrogels. The results presented in this study indicate that the iGG-MA and phGG-MA hydrogels are stable in vitro and in vivo, support hIVD cells encapsulation and viability, and were found to be well-tolerated and non-cytotoxic in vivo, thus being potential candidates for NP regeneration.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
2012-10-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/23147
url http://hdl.handle.net/1822/23147
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1932-6254
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv John Wiley and Sons
publisher.none.fl_str_mv John Wiley and Sons
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594962572214272