Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis

Detalhes bibliográficos
Autor(a) principal: Guimarães, Ana Sofia da Cunha
Data de Publicação: 2016
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/16842
Resumo: Peroxisomes are ubiquitous subcellular organelles, which fulfil important metabolic functions, notably the β-oxidation of fatty acids and the metabolism of hydrogen peroxide, and are thus essential for human health and development. The filamentous fungus Ustilago maydis is a biotrophic, basidiomycete responsible for corn smut disease. U. maydis exhibits several features similar to mammals including polar growth, microtubule-dependent organelle trafficking and open mitosis. In this study, we have exploited U. maydis as a new model system for studying fundamental processes in peroxisome biology. An intimate interrelationship between peroxisomes and mitochondria is emerging, where both organelles cooperate in cellular lipid homeostasis, oxidative balance, and innate immune response. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable genetically accessible model systems to study this interrelationship are scarce. Combined molecular, cell biology and bioinformatics analyses were performed to provide a first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with a peroxisome-deficient Δpex3 mutant revealed the existence of parallel and complex, cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the mammalian system. In mammalian cells, peroxisomes bind to and move along microtubules. In contrast, peroxisome motility in yeasts and plants requires the actin cytoskeleton. Peroxisome motility and dynamics are important prerequisites for peroxisome inheritance, proper intracellular distribution, positioning, organelle interactions, and biogenesis. A loss of trafficking and disturbed cytoplasmic distribution of peroxisomes can lead to a regional loss of essential peroxisomal activities and thus, to cell damage and degeneration. We revealed that peroxisomes in U. maydis move along microtubules, but peroxisome motility is early endosome-dependent. Moreover, lipid droplets and the ER appear to share a similar mechanism. Even distribution of peroxisomes is critical for cellular functions. However, the exact mechanism(s) for uniform peroxisome distribution are elusive. Using U. maydis, we demonstrated that the distribution and positioning of peroxisomes is dependent on microtubule-based processes and an actin-based polar drift. Microtubule-based processes include directed transport and active diffusion, which is a result of a constant flow and activity of motor proteins and organelles. These counteracting forces allow the proper distribution of peroxisomes throughout the hyphal cell. Moreover, work in mammalian cells, revealed a similar mechanism for proper distribution of peroxisomes. In summary, we provide novel evidence that the filamentous fungus U. maydis represents a suitable model to study fundamental biological processes of mammalian cells. Peroxisome motility and dynamics are important for cellular function and may prevent cell damage and degeneration. The use of U. maydis as a model system will lead to a better understanding of peroxisome dynamics and biology and will thus be of great cell biological and biomedical importance.
id RCAP_f5ad77e95e216df0071a1635d3e4ee77
oai_identifier_str oai:ria.ua.pt:10773/16842
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydisBiologiaPeroxissomasMotilidade celularMicrotúbulosPeroxisomes are ubiquitous subcellular organelles, which fulfil important metabolic functions, notably the β-oxidation of fatty acids and the metabolism of hydrogen peroxide, and are thus essential for human health and development. The filamentous fungus Ustilago maydis is a biotrophic, basidiomycete responsible for corn smut disease. U. maydis exhibits several features similar to mammals including polar growth, microtubule-dependent organelle trafficking and open mitosis. In this study, we have exploited U. maydis as a new model system for studying fundamental processes in peroxisome biology. An intimate interrelationship between peroxisomes and mitochondria is emerging, where both organelles cooperate in cellular lipid homeostasis, oxidative balance, and innate immune response. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable genetically accessible model systems to study this interrelationship are scarce. Combined molecular, cell biology and bioinformatics analyses were performed to provide a first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with a peroxisome-deficient Δpex3 mutant revealed the existence of parallel and complex, cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the mammalian system. In mammalian cells, peroxisomes bind to and move along microtubules. In contrast, peroxisome motility in yeasts and plants requires the actin cytoskeleton. Peroxisome motility and dynamics are important prerequisites for peroxisome inheritance, proper intracellular distribution, positioning, organelle interactions, and biogenesis. A loss of trafficking and disturbed cytoplasmic distribution of peroxisomes can lead to a regional loss of essential peroxisomal activities and thus, to cell damage and degeneration. We revealed that peroxisomes in U. maydis move along microtubules, but peroxisome motility is early endosome-dependent. Moreover, lipid droplets and the ER appear to share a similar mechanism. Even distribution of peroxisomes is critical for cellular functions. However, the exact mechanism(s) for uniform peroxisome distribution are elusive. Using U. maydis, we demonstrated that the distribution and positioning of peroxisomes is dependent on microtubule-based processes and an actin-based polar drift. Microtubule-based processes include directed transport and active diffusion, which is a result of a constant flow and activity of motor proteins and organelles. These counteracting forces allow the proper distribution of peroxisomes throughout the hyphal cell. Moreover, work in mammalian cells, revealed a similar mechanism for proper distribution of peroxisomes. In summary, we provide novel evidence that the filamentous fungus U. maydis represents a suitable model to study fundamental biological processes of mammalian cells. Peroxisome motility and dynamics are important for cellular function and may prevent cell damage and degeneration. The use of U. maydis as a model system will lead to a better understanding of peroxisome dynamics and biology and will thus be of great cell biological and biomedical importance.Os peroxissomas são organelos subcelulares ubíquos responsáveis por diversas funções metabólicas, nomeadamente a β-oxidação de ácidos gordos e destoxificação de espécies reativas de oxigénio, sendo por isso essenciais para a saúde e desenvolvimento humanos. O fungo filamentoso Ustilago maydis é um organismo biotrófico, do filo basidiomycota, que infesta o milho. Possui características similares às células de mamífero, nomeadamente a mobilidade através dos microtúbulos, o crescimento polar e a mitose aberta. Neste estudo usámos o U. maydis como modelo para o estudo de processos fundamentais da biologia dos peroxissomas. A cooperação entre os peroxissomas e a mitocôndrias tem-se revelado de grande interesse dada a existência de colaboração na β-oxidação de ácidos gordos, manutenção do equilíbrio oxidativo e do sistema imunitário inato. As mitocôndrias das plantas e leveduras não realizam β-oxidação, deste modo, é essencial um modelo geneticamente acessível para o estudo da relação entre os organelos. Assim, combinámos técnicas de biologia celular, molecular e de bioinformática gerámos um inventário das proteínas peroxissomais e das suas vias no U. maydis. Estudos com um mutante deficiente em peroxissomas, Pex3, revelaram a existência de uma cooperação paralela e complexa das vias de β- oxidação nas mitocôndrias e nos peroxissomas, à semelhança do que se observa nos mamíferos. Enquanto em leveduras e plantas os peroxissomas movem-se por filamentos de actina, em mamíferos os peroxissomas interagem e movimentam-se através dos microtúbulos. A mobilidade e dinâmica dos peroxissomas é fundamental para a distribuição intracelular, posicionamento, interações entre organelos e formação de novos organelos. Alterações no tráfico e/ou distribuição citoplasmática dos peroxissomas pode levar à perda de funções essenciais e levar à degeneração e morte celular. Aqui mostrámos que no U. maydis os peroxissomas se movem ao longo dos microtúbulos, mas este movimento é dependente dos endossomas primários. Adicionalmente, mostrámos que os corpos lipídicos e o retículo endoplasmático parecem partilhar um mecanismo semelhante. A distribuição uniforme dos peroxissomas é tida como essencial para as suas funções. No entanto, o mecanismo para a distribuição destes organelos é ainda desconhecido. Usando o U. maydis podémos verificar que os processos baseados no transporte através dos microtúbulos e distribuição polar, dependente da actina, são essenciais para a posicionamento dos peroxissomas. Os processos baseados no transporte através dos microtúbulos incluem transporte direto e difusão ativa. Estudos nas células de mamífero COS-7 revelaram um mecanismo semelhante na distribuição dos peroxissomas. Em suma, dispomos de novas evidências uso do U. maydis como modelo poderá conduzir a um melhor entendimento da dinâmica e biologia dos peroxissomas, o que poder-se-á revelar de grande valor biológico e de importância biomédicaUniversidade de Aveiro2017-02-17T14:39:30Z2016-01-01T00:00:00Z2016doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/16842TID:101573146engGuimarães, Ana Sofia da Cunhainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:00:17Zoai:ria.ua.pt:10773/16842Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:59.138691Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
title Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
spellingShingle Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
Guimarães, Ana Sofia da Cunha
Biologia
Peroxissomas
Motilidade celular
Microtúbulos
title_short Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
title_full Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
title_fullStr Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
title_full_unstemmed Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
title_sort Unveiling the mechanisms for microtubule-based peroxisome motility and distribution by exploiting the filamentous fungus U. maydis
author Guimarães, Ana Sofia da Cunha
author_facet Guimarães, Ana Sofia da Cunha
author_role author
dc.contributor.author.fl_str_mv Guimarães, Ana Sofia da Cunha
dc.subject.por.fl_str_mv Biologia
Peroxissomas
Motilidade celular
Microtúbulos
topic Biologia
Peroxissomas
Motilidade celular
Microtúbulos
description Peroxisomes are ubiquitous subcellular organelles, which fulfil important metabolic functions, notably the β-oxidation of fatty acids and the metabolism of hydrogen peroxide, and are thus essential for human health and development. The filamentous fungus Ustilago maydis is a biotrophic, basidiomycete responsible for corn smut disease. U. maydis exhibits several features similar to mammals including polar growth, microtubule-dependent organelle trafficking and open mitosis. In this study, we have exploited U. maydis as a new model system for studying fundamental processes in peroxisome biology. An intimate interrelationship between peroxisomes and mitochondria is emerging, where both organelles cooperate in cellular lipid homeostasis, oxidative balance, and innate immune response. As mitochondrial fatty acid β-oxidation is lacking in yeast and plants, suitable genetically accessible model systems to study this interrelationship are scarce. Combined molecular, cell biology and bioinformatics analyses were performed to provide a first comprehensive inventory of U. maydis peroxisomal proteins and pathways. Studies with a peroxisome-deficient Δpex3 mutant revealed the existence of parallel and complex, cooperative β-oxidation pathways in peroxisomes and mitochondria, mimicking the mammalian system. In mammalian cells, peroxisomes bind to and move along microtubules. In contrast, peroxisome motility in yeasts and plants requires the actin cytoskeleton. Peroxisome motility and dynamics are important prerequisites for peroxisome inheritance, proper intracellular distribution, positioning, organelle interactions, and biogenesis. A loss of trafficking and disturbed cytoplasmic distribution of peroxisomes can lead to a regional loss of essential peroxisomal activities and thus, to cell damage and degeneration. We revealed that peroxisomes in U. maydis move along microtubules, but peroxisome motility is early endosome-dependent. Moreover, lipid droplets and the ER appear to share a similar mechanism. Even distribution of peroxisomes is critical for cellular functions. However, the exact mechanism(s) for uniform peroxisome distribution are elusive. Using U. maydis, we demonstrated that the distribution and positioning of peroxisomes is dependent on microtubule-based processes and an actin-based polar drift. Microtubule-based processes include directed transport and active diffusion, which is a result of a constant flow and activity of motor proteins and organelles. These counteracting forces allow the proper distribution of peroxisomes throughout the hyphal cell. Moreover, work in mammalian cells, revealed a similar mechanism for proper distribution of peroxisomes. In summary, we provide novel evidence that the filamentous fungus U. maydis represents a suitable model to study fundamental biological processes of mammalian cells. Peroxisome motility and dynamics are important for cellular function and may prevent cell damage and degeneration. The use of U. maydis as a model system will lead to a better understanding of peroxisome dynamics and biology and will thus be of great cell biological and biomedical importance.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2017-02-17T14:39:30Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16842
TID:101573146
url http://hdl.handle.net/10773/16842
identifier_str_mv TID:101573146
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594170950811648