A Meta-Genetic Algorithm for Time Series Forecasting
Main Author: | |
---|---|
Publication Date: | 2001 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/121 |
Summary: | Alternative approaches for Time Series Forecasting (TSF) emerged from the Artificial Intelligence arena, where optimization algorithms inspired on natural selection processes, such as Genetic Algorithms (GAs) are popular. The present work reports on a two-level architecture, where a (meta-level) binary GA will search for the best TSF model, being the parameters optimized by a (low-level) GA, which encodes real values. The machine's performance of this approach was compared with conventional forecasting methods, exhibiting good results, specially when trended and nonlinear series are considered. |
id |
RCAP_f57d20da6d595593522f14d483280df3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/121 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A Meta-Genetic Algorithm for Time Series ForecastingARMA Models(Meta-)Genetic AlgorithmsModel SelectionTime Series ForecastingAlternative approaches for Time Series Forecasting (TSF) emerged from the Artificial Intelligence arena, where optimization algorithms inspired on natural selection processes, such as Genetic Algorithms (GAs) are popular. The present work reports on a two-level architecture, where a (meta-level) binary GA will search for the best TSF model, being the parameters optimized by a (low-level) GA, which encodes real values. The machine's performance of this approach was compared with conventional forecasting methods, exhibiting good results, specially when trended and nonlinear series are considered.The work of Paulo Cortez was supported by the Portuguese Foundation of Science & Technology through the PRAXIS XXI/BD/13793/97 grant. The work of José Neves was supported by the PRAXIS project PRAXIS/P/EEI/13096/98.Universidade do MinhoCortez, PauloRocha, MiguelNeves, José2001-122001-12-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/121engIn Luís Torgo Ed., Proceedings of Workshop on Artificial Intelligence Techniques for Financial Time Series Analysis (AIFTSA -01), 10th Portuguese Conference on Artificial Intelligence (EPIA'01), Porto, Portugal, pp. 21-31info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:15:24Zoai:repositorium.sdum.uminho.pt:1822/121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:43:33.846215Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A Meta-Genetic Algorithm for Time Series Forecasting |
title |
A Meta-Genetic Algorithm for Time Series Forecasting |
spellingShingle |
A Meta-Genetic Algorithm for Time Series Forecasting Cortez, Paulo ARMA Models (Meta-)Genetic Algorithms Model Selection Time Series Forecasting |
title_short |
A Meta-Genetic Algorithm for Time Series Forecasting |
title_full |
A Meta-Genetic Algorithm for Time Series Forecasting |
title_fullStr |
A Meta-Genetic Algorithm for Time Series Forecasting |
title_full_unstemmed |
A Meta-Genetic Algorithm for Time Series Forecasting |
title_sort |
A Meta-Genetic Algorithm for Time Series Forecasting |
author |
Cortez, Paulo |
author_facet |
Cortez, Paulo Rocha, Miguel Neves, José |
author_role |
author |
author2 |
Rocha, Miguel Neves, José |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cortez, Paulo Rocha, Miguel Neves, José |
dc.subject.por.fl_str_mv |
ARMA Models (Meta-)Genetic Algorithms Model Selection Time Series Forecasting |
topic |
ARMA Models (Meta-)Genetic Algorithms Model Selection Time Series Forecasting |
description |
Alternative approaches for Time Series Forecasting (TSF) emerged from the Artificial Intelligence arena, where optimization algorithms inspired on natural selection processes, such as Genetic Algorithms (GAs) are popular. The present work reports on a two-level architecture, where a (meta-level) binary GA will search for the best TSF model, being the parameters optimized by a (low-level) GA, which encodes real values. The machine's performance of this approach was compared with conventional forecasting methods, exhibiting good results, specially when trended and nonlinear series are considered. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 2001-12-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/121 |
url |
http://hdl.handle.net/1822/121 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
In Luís Torgo Ed., Proceedings of Workshop on Artificial Intelligence Techniques for Financial Time Series Analysis (AIFTSA -01), 10th Portuguese Conference on Artificial Intelligence (EPIA'01), Porto, Portugal, pp. 21-31 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594845013213184 |