Hybridizing sparse component analysis with genetic algorithms for microarray analysis
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/5819 |
Summary: | Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data. |
id |
RCAP_f4dc19d15bd9b6f4276f7dee2a3858ea |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/5819 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Hybridizing sparse component analysis with genetic algorithms for microarray analysisSparse nonnegative matrix factorizationBlind source separationGene microarray analysisNonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.Elsevier2012-02-06T12:48:25Z2008-06-01T00:00:00Z2008-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/5819eng0925-231210.1016/j.neucom.2007.09.017Stadlthanner, K.Theis, F. J.Lang, E. W.Tomé, A. M.Puntonet, C. G.Górriz, J. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:36:52Zoai:ria.ua.pt:10773/5819Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:40:33.224581Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
title |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
spellingShingle |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis Stadlthanner, K. Sparse nonnegative matrix factorization Blind source separation Gene microarray analysis |
title_short |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
title_full |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
title_fullStr |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
title_full_unstemmed |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
title_sort |
Hybridizing sparse component analysis with genetic algorithms for microarray analysis |
author |
Stadlthanner, K. |
author_facet |
Stadlthanner, K. Theis, F. J. Lang, E. W. Tomé, A. M. Puntonet, C. G. Górriz, J. M. |
author_role |
author |
author2 |
Theis, F. J. Lang, E. W. Tomé, A. M. Puntonet, C. G. Górriz, J. M. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Stadlthanner, K. Theis, F. J. Lang, E. W. Tomé, A. M. Puntonet, C. G. Górriz, J. M. |
dc.subject.por.fl_str_mv |
Sparse nonnegative matrix factorization Blind source separation Gene microarray analysis |
topic |
Sparse nonnegative matrix factorization Blind source separation Gene microarray analysis |
description |
Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-01T00:00:00Z 2008-06 2012-02-06T12:48:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/5819 |
url |
http://hdl.handle.net/10773/5819 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0925-2312 10.1016/j.neucom.2007.09.017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833593977102663680 |