Hybridizing sparse component analysis with genetic algorithms for microarray analysis

Bibliographic Details
Main Author: Stadlthanner, K.
Publication Date: 2008
Other Authors: Theis, F. J., Lang, E. W., Tomé, A. M., Puntonet, C. G., Górriz, J. M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/5819
Summary: Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.
id RCAP_f4dc19d15bd9b6f4276f7dee2a3858ea
oai_identifier_str oai:ria.ua.pt:10773/5819
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Hybridizing sparse component analysis with genetic algorithms for microarray analysisSparse nonnegative matrix factorizationBlind source separationGene microarray analysisNonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.Elsevier2012-02-06T12:48:25Z2008-06-01T00:00:00Z2008-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/5819eng0925-231210.1016/j.neucom.2007.09.017Stadlthanner, K.Theis, F. J.Lang, E. W.Tomé, A. M.Puntonet, C. G.Górriz, J. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:36:52Zoai:ria.ua.pt:10773/5819Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:40:33.224581Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Hybridizing sparse component analysis with genetic algorithms for microarray analysis
title Hybridizing sparse component analysis with genetic algorithms for microarray analysis
spellingShingle Hybridizing sparse component analysis with genetic algorithms for microarray analysis
Stadlthanner, K.
Sparse nonnegative matrix factorization
Blind source separation
Gene microarray analysis
title_short Hybridizing sparse component analysis with genetic algorithms for microarray analysis
title_full Hybridizing sparse component analysis with genetic algorithms for microarray analysis
title_fullStr Hybridizing sparse component analysis with genetic algorithms for microarray analysis
title_full_unstemmed Hybridizing sparse component analysis with genetic algorithms for microarray analysis
title_sort Hybridizing sparse component analysis with genetic algorithms for microarray analysis
author Stadlthanner, K.
author_facet Stadlthanner, K.
Theis, F. J.
Lang, E. W.
Tomé, A. M.
Puntonet, C. G.
Górriz, J. M.
author_role author
author2 Theis, F. J.
Lang, E. W.
Tomé, A. M.
Puntonet, C. G.
Górriz, J. M.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Stadlthanner, K.
Theis, F. J.
Lang, E. W.
Tomé, A. M.
Puntonet, C. G.
Górriz, J. M.
dc.subject.por.fl_str_mv Sparse nonnegative matrix factorization
Blind source separation
Gene microarray analysis
topic Sparse nonnegative matrix factorization
Blind source separation
Gene microarray analysis
description Nonnegative Matrix Factorization (NMF) has proven to be a useful tool for the analysis of nonnegative multivariate data. However, it is known not to lead to unique results when applied to Blind Source Separation (BSS) problems. In this paper we present an extension of NMF capable of solving the BSS problem when the underlying sources are sufficiently sparse. In contrast to most well-established BSS methods, the devised algorithm is capable of solving the BSS problem in cases where the underlying sources are not independent or uncorrelated. As the proposed fitness function is discontinuous and possesses many local minima, we use a genetic algorithm for its minimization. Finally, we apply the devised algorithm to real world microarray data.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-01T00:00:00Z
2008-06
2012-02-06T12:48:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/5819
url http://hdl.handle.net/10773/5819
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0925-2312
10.1016/j.neucom.2007.09.017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833593977102663680