Exportação concluída — 

Decoding of 2D convolutional codes over an erasure channel

Detalhes bibliográficos
Autor(a) principal: Climent, Joan-Josep
Data de Publicação: 2016
Outros Autores: Napp, Diego, Pinto, Raquel, Simões, Rita
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/16612
Resumo: In this paper we address the problem of decoding 2D convolutional codes over an erasure channel. To this end we introduce the notion of neighbors around a set of erasures which can be considered an analogue of the notion of sliding window in the context of 1D convolutional codes. The main idea is to reduce the decoding problem of 2D convolutional codes to a problem of decoding a set of associated 1D convolutional codes. We first show how to recover sets of erasures that are distributed on vertical, horizontal and diagonal lines. Finally we outline some ideas to treat any set of erasures distributed randomly on the 2D plane. © 2016 AIMS.
id RCAP_f46a1d02dc288ed8facb9dda538a5ca0
oai_identifier_str oai:ria.ua.pt:10773/16612
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Decoding of 2D convolutional codes over an erasure channel1D finite support convolutional codes2D finite support convolutional codesErasure channelIn this paper we address the problem of decoding 2D convolutional codes over an erasure channel. To this end we introduce the notion of neighbors around a set of erasures which can be considered an analogue of the notion of sliding window in the context of 1D convolutional codes. The main idea is to reduce the decoding problem of 2D convolutional codes to a problem of decoding a set of associated 1D convolutional codes. We first show how to recover sets of erasures that are distributed on vertical, horizontal and diagonal lines. Finally we outline some ideas to treat any set of erasures distributed randomly on the 2D plane. © 2016 AIMS.American Institute of Mathematical Sciences2016-022016-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16612eng1930-534610.3934/amc.2016.10.179Climent, Joan-JosepNapp, DiegoPinto, RaquelSimões, Ritainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:59:12Zoai:ria.ua.pt:10773/16612Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:53:32.842316Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Decoding of 2D convolutional codes over an erasure channel
title Decoding of 2D convolutional codes over an erasure channel
spellingShingle Decoding of 2D convolutional codes over an erasure channel
Climent, Joan-Josep
1D finite support convolutional codes
2D finite support convolutional codes
Erasure channel
title_short Decoding of 2D convolutional codes over an erasure channel
title_full Decoding of 2D convolutional codes over an erasure channel
title_fullStr Decoding of 2D convolutional codes over an erasure channel
title_full_unstemmed Decoding of 2D convolutional codes over an erasure channel
title_sort Decoding of 2D convolutional codes over an erasure channel
author Climent, Joan-Josep
author_facet Climent, Joan-Josep
Napp, Diego
Pinto, Raquel
Simões, Rita
author_role author
author2 Napp, Diego
Pinto, Raquel
Simões, Rita
author2_role author
author
author
dc.contributor.author.fl_str_mv Climent, Joan-Josep
Napp, Diego
Pinto, Raquel
Simões, Rita
dc.subject.por.fl_str_mv 1D finite support convolutional codes
2D finite support convolutional codes
Erasure channel
topic 1D finite support convolutional codes
2D finite support convolutional codes
Erasure channel
description In this paper we address the problem of decoding 2D convolutional codes over an erasure channel. To this end we introduce the notion of neighbors around a set of erasures which can be considered an analogue of the notion of sliding window in the context of 1D convolutional codes. The main idea is to reduce the decoding problem of 2D convolutional codes to a problem of decoding a set of associated 1D convolutional codes. We first show how to recover sets of erasures that are distributed on vertical, horizontal and diagonal lines. Finally we outline some ideas to treat any set of erasures distributed randomly on the 2D plane. © 2016 AIMS.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
2016-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/16612
url http://hdl.handle.net/10773/16612
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1930-5346
10.3934/amc.2016.10.179
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Institute of Mathematical Sciences
publisher.none.fl_str_mv American Institute of Mathematical Sciences
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594168933351424