The use of nanofertilizers to increase precision in rice production

Bibliographic Details
Main Author: Saraiva, Raquel
Publication Date: 2021
Other Authors: Rodrigues, Gonçalo, Ferreira, Quirina, Oliveira, Margarida
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.15/3900
Summary: Rice cultivation (Oryza sativa L.) has a widespread use of fertilizers and pesticides since it is necessary to produce larger quantities and also prevent the effect of pests, diseases and weeds, in order to fulfil the food demands of a growing world population. For the use of phosphorus, the limit set by Bertolami & Francisco (2020), at the Planetary Boundaries, has already been exceeded, causing marked disturbances in the earth system, meaning that its delivery, although indispensable, must be carried out precisely and in forms that can be easily assimilated by crops. The scarcity of phosphorus and the consequent increase in its price in recent years also impose the urgency of new forms of application. Nanofertilizers can provide a precise and more sustainable way of application, as the amount of raw material is reduced. Likewise, the pressure on aquatic ecosystems is reduced, since rice is grown in flooded beds and therefore losses to water bodies have to be reduced. The aim of this work is to develop phosphorous nanofertilizer pellets, which use slow release technology to ensure the precise and efficient application of phosphorus to rice crops along the cycle, and to verify their possible effect as a biostimulant. The use of suitable and sustainable supports for nanofertilizers is extremely important as the main challenge for their use is the amount of support required to successfully deliver the active substance (Ekebafe et al., 2011). The proposed pellets will consist of poly-beta-amino-esters (PBAE), graphene oxide (GO), chitosan, poly lactic-co-glycolic acid (PLGA) and the active substance. Development of the pellets will comprise component integration and design, followed by kinetic tests to assess its stability under different conditions. Ecotoxicology tests, at different trophic levels, will be performed to ensure that there are no ecotoxicity effects from the use of any component and/or combination of components. Finally, when all the preparatory tests are concluded, feedback will be given to the development stage and improvements will be made to optimize the pellets. When the optimization process is complete, the pellets will be tested in pilot rice assays where conventional fertilizer will be used as control. If the pellets prove to be effective and without any harmful effect, its use can be spread to other fertilizer and other crops towards a more sustainable production.
id RCAP_f45eae71797cf7017bd5fdc108e4808c
oai_identifier_str oai:repositorio.ipsantarem.pt:10400.15/3900
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The use of nanofertilizers to increase precision in rice productionChitosanControlled release substanceGraphene oxide;Layer-by-layer technique PLGARice cultivation (Oryza sativa L.) has a widespread use of fertilizers and pesticides since it is necessary to produce larger quantities and also prevent the effect of pests, diseases and weeds, in order to fulfil the food demands of a growing world population. For the use of phosphorus, the limit set by Bertolami & Francisco (2020), at the Planetary Boundaries, has already been exceeded, causing marked disturbances in the earth system, meaning that its delivery, although indispensable, must be carried out precisely and in forms that can be easily assimilated by crops. The scarcity of phosphorus and the consequent increase in its price in recent years also impose the urgency of new forms of application. Nanofertilizers can provide a precise and more sustainable way of application, as the amount of raw material is reduced. Likewise, the pressure on aquatic ecosystems is reduced, since rice is grown in flooded beds and therefore losses to water bodies have to be reduced. The aim of this work is to develop phosphorous nanofertilizer pellets, which use slow release technology to ensure the precise and efficient application of phosphorus to rice crops along the cycle, and to verify their possible effect as a biostimulant. The use of suitable and sustainable supports for nanofertilizers is extremely important as the main challenge for their use is the amount of support required to successfully deliver the active substance (Ekebafe et al., 2011). The proposed pellets will consist of poly-beta-amino-esters (PBAE), graphene oxide (GO), chitosan, poly lactic-co-glycolic acid (PLGA) and the active substance. Development of the pellets will comprise component integration and design, followed by kinetic tests to assess its stability under different conditions. Ecotoxicology tests, at different trophic levels, will be performed to ensure that there are no ecotoxicity effects from the use of any component and/or combination of components. Finally, when all the preparatory tests are concluded, feedback will be given to the development stage and improvements will be made to optimize the pellets. When the optimization process is complete, the pellets will be tested in pilot rice assays where conventional fertilizer will be used as control. If the pellets prove to be effective and without any harmful effect, its use can be spread to other fertilizer and other crops towards a more sustainable production.Faculty of Mechanical Engineering and Naval Architecture, ZagrebRepositório Científico do Instituto Politécnico de SantarémSaraiva, RaquelRodrigues, GonçaloFerreira, QuirinaOliveira, Margarida2022-03-09T14:45:45Z2021-10-142021-10-14T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.15/3900eng1847-7178SDEWES2021.0978info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-11T04:33:03Zoai:repositorio.ipsantarem.pt:10400.15/3900Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:09:46.785764Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The use of nanofertilizers to increase precision in rice production
title The use of nanofertilizers to increase precision in rice production
spellingShingle The use of nanofertilizers to increase precision in rice production
Saraiva, Raquel
Chitosan
Controlled release substance
Graphene oxide;
Layer-by-layer technique PLGA
title_short The use of nanofertilizers to increase precision in rice production
title_full The use of nanofertilizers to increase precision in rice production
title_fullStr The use of nanofertilizers to increase precision in rice production
title_full_unstemmed The use of nanofertilizers to increase precision in rice production
title_sort The use of nanofertilizers to increase precision in rice production
author Saraiva, Raquel
author_facet Saraiva, Raquel
Rodrigues, Gonçalo
Ferreira, Quirina
Oliveira, Margarida
author_role author
author2 Rodrigues, Gonçalo
Ferreira, Quirina
Oliveira, Margarida
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico de Santarém
dc.contributor.author.fl_str_mv Saraiva, Raquel
Rodrigues, Gonçalo
Ferreira, Quirina
Oliveira, Margarida
dc.subject.por.fl_str_mv Chitosan
Controlled release substance
Graphene oxide;
Layer-by-layer technique PLGA
topic Chitosan
Controlled release substance
Graphene oxide;
Layer-by-layer technique PLGA
description Rice cultivation (Oryza sativa L.) has a widespread use of fertilizers and pesticides since it is necessary to produce larger quantities and also prevent the effect of pests, diseases and weeds, in order to fulfil the food demands of a growing world population. For the use of phosphorus, the limit set by Bertolami & Francisco (2020), at the Planetary Boundaries, has already been exceeded, causing marked disturbances in the earth system, meaning that its delivery, although indispensable, must be carried out precisely and in forms that can be easily assimilated by crops. The scarcity of phosphorus and the consequent increase in its price in recent years also impose the urgency of new forms of application. Nanofertilizers can provide a precise and more sustainable way of application, as the amount of raw material is reduced. Likewise, the pressure on aquatic ecosystems is reduced, since rice is grown in flooded beds and therefore losses to water bodies have to be reduced. The aim of this work is to develop phosphorous nanofertilizer pellets, which use slow release technology to ensure the precise and efficient application of phosphorus to rice crops along the cycle, and to verify their possible effect as a biostimulant. The use of suitable and sustainable supports for nanofertilizers is extremely important as the main challenge for their use is the amount of support required to successfully deliver the active substance (Ekebafe et al., 2011). The proposed pellets will consist of poly-beta-amino-esters (PBAE), graphene oxide (GO), chitosan, poly lactic-co-glycolic acid (PLGA) and the active substance. Development of the pellets will comprise component integration and design, followed by kinetic tests to assess its stability under different conditions. Ecotoxicology tests, at different trophic levels, will be performed to ensure that there are no ecotoxicity effects from the use of any component and/or combination of components. Finally, when all the preparatory tests are concluded, feedback will be given to the development stage and improvements will be made to optimize the pellets. When the optimization process is complete, the pellets will be tested in pilot rice assays where conventional fertilizer will be used as control. If the pellets prove to be effective and without any harmful effect, its use can be spread to other fertilizer and other crops towards a more sustainable production.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-14
2021-10-14T00:00:00Z
2022-03-09T14:45:45Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.15/3900
url http://hdl.handle.net/10400.15/3900
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1847-7178
SDEWES2021.0978
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Faculty of Mechanical Engineering and Naval Architecture, Zagreb
publisher.none.fl_str_mv Faculty of Mechanical Engineering and Naval Architecture, Zagreb
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602903759126528