Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.1/18877 |
Resumo: | Harmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes depending on several biotic and abiotic variables, turning prediction of shellfish contamination into a challenging task. Not only the information of interest is dispersed among multiple sources, but also the complex temporal relationships between the time-series variables require advanced machine methods to model such relationships. In this study, multiple time-series variables measured in Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best results regarding the mean absolute error of prediction were obtained for a bivariate long short-term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements, with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability to predict the contamination state (below or above the regulatory limit for contamination) and changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded improved predictive performance on a case-by-case basis. These results show the possibility of extracting relevant information from time-series data from multiple sources which are predictive of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the production sector in anticipating harvesting interdictions and mitigating economic losses.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
id |
RCAP_f45251afed765b2343e54b19dfba0af5 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/18877 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural NetworksTime seriesForecastingArtificial Neural NetworksBiotoxinsShellfish contaminationHarmful algal bloomsHarmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes depending on several biotic and abiotic variables, turning prediction of shellfish contamination into a challenging task. Not only the information of interest is dispersed among multiple sources, but also the complex temporal relationships between the time-series variables require advanced machine methods to model such relationships. In this study, multiple time-series variables measured in Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best results regarding the mean absolute error of prediction were obtained for a bivariate long short-term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements, with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability to predict the contamination state (below or above the regulatory limit for contamination) and changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded improved predictive performance on a case-by-case basis. These results show the possibility of extracting relevant information from time-series data from multiple sources which are predictive of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the production sector in anticipating harvesting interdictions and mitigating economic losses.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).ElsevierSapientiaCruz, Rafaela C.Reis Costa, PedroKrippahl, LudwigLopes, Marta B.2023-01-20T14:05:52Z2022-122022-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/18877eng10.1016/j.knosys.2022.109895info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:24:49Zoai:sapientia.ualg.pt:10400.1/18877Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:21:01.093836Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
title |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
spellingShingle |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks Cruz, Rafaela C. Time series Forecasting Artificial Neural Networks Biotoxins Shellfish contamination Harmful algal blooms |
title_short |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
title_full |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
title_fullStr |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
title_full_unstemmed |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
title_sort |
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks |
author |
Cruz, Rafaela C. |
author_facet |
Cruz, Rafaela C. Reis Costa, Pedro Krippahl, Ludwig Lopes, Marta B. |
author_role |
author |
author2 |
Reis Costa, Pedro Krippahl, Ludwig Lopes, Marta B. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Cruz, Rafaela C. Reis Costa, Pedro Krippahl, Ludwig Lopes, Marta B. |
dc.subject.por.fl_str_mv |
Time series Forecasting Artificial Neural Networks Biotoxins Shellfish contamination Harmful algal blooms |
topic |
Time series Forecasting Artificial Neural Networks Biotoxins Shellfish contamination Harmful algal blooms |
description |
Harmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes depending on several biotic and abiotic variables, turning prediction of shellfish contamination into a challenging task. Not only the information of interest is dispersed among multiple sources, but also the complex temporal relationships between the time-series variables require advanced machine methods to model such relationships. In this study, multiple time-series variables measured in Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best results regarding the mean absolute error of prediction were obtained for a bivariate long short-term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements, with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability to predict the contamination state (below or above the regulatory limit for contamination) and changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded improved predictive performance on a case-by-case basis. These results show the possibility of extracting relevant information from time-series data from multiple sources which are predictive of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the production sector in anticipating harvesting interdictions and mitigating economic losses.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 2022-12-01T00:00:00Z 2023-01-20T14:05:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/18877 |
url |
http://hdl.handle.net/10400.1/18877 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.knosys.2022.109895 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598615913758720 |