Fine-tuning artificial neural networks automatically

Bibliographic Details
Main Author: Francisco Reinaldo
Publication Date: 2007
Other Authors: Rui Camacho, Luís P. Reis, Demétrio Renó Magalhães
Format: Book
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/67390
Summary: To get the most out of powerful tools expert knowledge is often required. Experts are the ones with the suitable knowledge to tune the tools parameters. In this paper we assess several techniques which can automatically fine tune ANN parameters. Those techniques include the use of GA and Stratified Sampling. The tuning includes the choice of the best ANN structure and the best network biases and their weights. Empirical results achieved in experiments performed using nine heterogeneous data sets show that the use of the proposed Stratified Sampling technique is advantageous.
id RCAP_f3ea5bb3ce6d0733eccee24b165d44b1
oai_identifier_str oai:repositorio-aberto.up.pt:10216/67390
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Fine-tuning artificial neural networks automaticallyEngenharia do conhecimento, Engenharia electrotécnica, electrónica e informáticaKnowledge engineering, Electrical engineering, Electronic engineering, Information engineeringTo get the most out of powerful tools expert knowledge is often required. Experts are the ones with the suitable knowledge to tune the tools parameters. In this paper we assess several techniques which can automatically fine tune ANN parameters. Those techniques include the use of GA and Stratified Sampling. The tuning includes the choice of the best ANN structure and the best network biases and their weights. Empirical results achieved in experiments performed using nine heterogeneous data sets show that the use of the proposed Stratified Sampling technique is advantageous.20072007-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfhttps://hdl.handle.net/10216/67390eng10.1007/978-0-387-84814-3_5Francisco ReinaldoRui CamachoLuís P. ReisDemétrio Renó Magalhãesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T19:48:34Zoai:repositorio-aberto.up.pt:10216/67390Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T23:32:59.003348Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Fine-tuning artificial neural networks automatically
title Fine-tuning artificial neural networks automatically
spellingShingle Fine-tuning artificial neural networks automatically
Francisco Reinaldo
Engenharia do conhecimento, Engenharia electrotécnica, electrónica e informática
Knowledge engineering, Electrical engineering, Electronic engineering, Information engineering
title_short Fine-tuning artificial neural networks automatically
title_full Fine-tuning artificial neural networks automatically
title_fullStr Fine-tuning artificial neural networks automatically
title_full_unstemmed Fine-tuning artificial neural networks automatically
title_sort Fine-tuning artificial neural networks automatically
author Francisco Reinaldo
author_facet Francisco Reinaldo
Rui Camacho
Luís P. Reis
Demétrio Renó Magalhães
author_role author
author2 Rui Camacho
Luís P. Reis
Demétrio Renó Magalhães
author2_role author
author
author
dc.contributor.author.fl_str_mv Francisco Reinaldo
Rui Camacho
Luís P. Reis
Demétrio Renó Magalhães
dc.subject.por.fl_str_mv Engenharia do conhecimento, Engenharia electrotécnica, electrónica e informática
Knowledge engineering, Electrical engineering, Electronic engineering, Information engineering
topic Engenharia do conhecimento, Engenharia electrotécnica, electrónica e informática
Knowledge engineering, Electrical engineering, Electronic engineering, Information engineering
description To get the most out of powerful tools expert knowledge is often required. Experts are the ones with the suitable knowledge to tune the tools parameters. In this paper we assess several techniques which can automatically fine tune ANN parameters. Those techniques include the use of GA and Stratified Sampling. The tuning includes the choice of the best ANN structure and the best network biases and their weights. Empirical results achieved in experiments performed using nine heterogeneous data sets show that the use of the proposed Stratified Sampling technique is advantageous.
publishDate 2007
dc.date.none.fl_str_mv 2007
2007-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/67390
url https://hdl.handle.net/10216/67390
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-0-387-84814-3_5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600200110768128