Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/69655 |
Summary: | [extract] Objetives: explore the possibility of using Deep Learning (DL) techniques to evaluate the drag coefficient of small non-Brownian particles translating and settling in nonlinear viscoelastic fluids. The long-term objective is the development of a 3D numerical code for particle-laden viscoelastic flows (PLVF), which will contribute to understanding many advanced manufacturing and industrial operations, specifically the hydraulic fracturing process. |
| id |
RCAP_f3d0c1b75affe7f51f7e3e8332c52c31 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/69655 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modellingEngenharia e Tecnologia::Engenharia Mecânica[extract] Objetives: explore the possibility of using Deep Learning (DL) techniques to evaluate the drag coefficient of small non-Brownian particles translating and settling in nonlinear viscoelastic fluids. The long-term objective is the development of a 3D numerical code for particle-laden viscoelastic flows (PLVF), which will contribute to understanding many advanced manufacturing and industrial operations, specifically the hydraulic fracturing process.Universidade do MinhoFernandes, C.Faroughi, S. A.Nóbrega, J. M.McKinley, G. H.2020-102020-10-01T00:00:00Zconference posterinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/69655engC. Fernandes, S.A. Faroughi, J.M. Nóbrega, G.H. McKinley, “Exploratory Project 2019 - Deep learning for particle-laden viscoelastic flow modelling”, MIT Portugal 2020 Annual Conference, Lisbon, Portugal, 15 October, 2020info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:49:40Zoai:repositorium.sdum.uminho.pt:1822/69655Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:31:29.486599Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| title |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| spellingShingle |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling Fernandes, C. Engenharia e Tecnologia::Engenharia Mecânica |
| title_short |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| title_full |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| title_fullStr |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| title_full_unstemmed |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| title_sort |
Exploratory project 2019 - deep learning for particle-laden viscoelastic flow modelling |
| author |
Fernandes, C. |
| author_facet |
Fernandes, C. Faroughi, S. A. Nóbrega, J. M. McKinley, G. H. |
| author_role |
author |
| author2 |
Faroughi, S. A. Nóbrega, J. M. McKinley, G. H. |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Fernandes, C. Faroughi, S. A. Nóbrega, J. M. McKinley, G. H. |
| dc.subject.por.fl_str_mv |
Engenharia e Tecnologia::Engenharia Mecânica |
| topic |
Engenharia e Tecnologia::Engenharia Mecânica |
| description |
[extract] Objetives: explore the possibility of using Deep Learning (DL) techniques to evaluate the drag coefficient of small non-Brownian particles translating and settling in nonlinear viscoelastic fluids. The long-term objective is the development of a 3D numerical code for particle-laden viscoelastic flows (PLVF), which will contribute to understanding many advanced manufacturing and industrial operations, specifically the hydraulic fracturing process. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-10 2020-10-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference poster |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/69655 |
| url |
http://hdl.handle.net/1822/69655 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
C. Fernandes, S.A. Faroughi, J.M. Nóbrega, G.H. McKinley, “Exploratory Project 2019 - Deep learning for particle-laden viscoelastic flow modelling”, MIT Portugal 2020 Annual Conference, Lisbon, Portugal, 15 October, 2020 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595369549725696 |