Teaching Note—Data Science Training for Finance and Risk Analysis

Bibliographic Details
Main Author: Ashofteh, Afshin
Publication Date: 2023
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/161543
Summary: Ashofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2
id RCAP_f37e57550dbd335c8753a358a7552eb3
oai_identifier_str oai:run.unl.pt:10362/161543
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Teaching Note—Data Science Training for Finance and Risk AnalysisA Pedagogical Approach with Integrating Online PlatformsData ScienceFinanceRisk AnalysisActive LearningBig DataMathematics(all)SDG 4 - Quality EducationSDG 8 - Decent Work and Economic GrowthSDG 9 - Industry, Innovation, and InfrastructureSDG 10 - Reduced InequalitiesAshofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2The main discussion of this paper is a method of data science training, which allows responding to the complex challenges of finance and risk analysis. There is growing recognition of the importance of creating and deploying financial models for risk management, incorporating new data and Big Data sources. Automating, analyzing, and optimizing a set of complex financial systems requires a wide range of skills and competencies that are rarely taught in typical finance and econometrics courses. Adopting these technologies for financial problems necessitates new skills and knowledge about processes, quality assurance frameworks, technologies, security needs, privacy, and legal issues. This paper discusses a pedagogical approach to overcome the teaching complexity of needed soft and hard skills in an integrated manner with its advantages, disadvantages, and vulnerabilities.Springer NatureNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNAshofteh, Afshin2024-12-19T01:31:50Z2023-12-132023-12-13T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfapplication/pdfhttp://hdl.handle.net/10362/161543eng978-3-031-39863-62194-1009PURE: 78458014https://doi.org/10.1007/978-3-031-39864-3_2info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-23T01:36:25Zoai:run.unl.pt:10362/161543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:47:39.842923Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Teaching Note—Data Science Training for Finance and Risk Analysis
A Pedagogical Approach with Integrating Online Platforms
title Teaching Note—Data Science Training for Finance and Risk Analysis
spellingShingle Teaching Note—Data Science Training for Finance and Risk Analysis
Ashofteh, Afshin
Data Science
Finance
Risk Analysis
Active Learning
Big Data
Mathematics(all)
SDG 4 - Quality Education
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
SDG 10 - Reduced Inequalities
title_short Teaching Note—Data Science Training for Finance and Risk Analysis
title_full Teaching Note—Data Science Training for Finance and Risk Analysis
title_fullStr Teaching Note—Data Science Training for Finance and Risk Analysis
title_full_unstemmed Teaching Note—Data Science Training for Finance and Risk Analysis
title_sort Teaching Note—Data Science Training for Finance and Risk Analysis
author Ashofteh, Afshin
author_facet Ashofteh, Afshin
author_role author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Ashofteh, Afshin
dc.subject.por.fl_str_mv Data Science
Finance
Risk Analysis
Active Learning
Big Data
Mathematics(all)
SDG 4 - Quality Education
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
SDG 10 - Reduced Inequalities
topic Data Science
Finance
Risk Analysis
Active Learning
Big Data
Mathematics(all)
SDG 4 - Quality Education
SDG 8 - Decent Work and Economic Growth
SDG 9 - Industry, Innovation, and Infrastructure
SDG 10 - Reduced Inequalities
description Ashofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2
publishDate 2023
dc.date.none.fl_str_mv 2023-12-13
2023-12-13T00:00:00Z
2024-12-19T01:31:50Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/161543
url http://hdl.handle.net/10362/161543
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-031-39863-6
2194-1009
PURE: 78458014
https://doi.org/10.1007/978-3-031-39864-3_2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 8
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596965684772864