Teaching Note—Data Science Training for Finance and Risk Analysis
Main Author: | |
---|---|
Publication Date: | 2023 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/161543 |
Summary: | Ashofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2 |
id |
RCAP_f37e57550dbd335c8753a358a7552eb3 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/161543 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Teaching Note—Data Science Training for Finance and Risk AnalysisA Pedagogical Approach with Integrating Online PlatformsData ScienceFinanceRisk AnalysisActive LearningBig DataMathematics(all)SDG 4 - Quality EducationSDG 8 - Decent Work and Economic GrowthSDG 9 - Industry, Innovation, and InfrastructureSDG 10 - Reduced InequalitiesAshofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2The main discussion of this paper is a method of data science training, which allows responding to the complex challenges of finance and risk analysis. There is growing recognition of the importance of creating and deploying financial models for risk management, incorporating new data and Big Data sources. Automating, analyzing, and optimizing a set of complex financial systems requires a wide range of skills and competencies that are rarely taught in typical finance and econometrics courses. Adopting these technologies for financial problems necessitates new skills and knowledge about processes, quality assurance frameworks, technologies, security needs, privacy, and legal issues. This paper discusses a pedagogical approach to overcome the teaching complexity of needed soft and hard skills in an integrated manner with its advantages, disadvantages, and vulnerabilities.Springer NatureNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNAshofteh, Afshin2024-12-19T01:31:50Z2023-12-132023-12-13T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfapplication/pdfhttp://hdl.handle.net/10362/161543eng978-3-031-39863-62194-1009PURE: 78458014https://doi.org/10.1007/978-3-031-39864-3_2info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-23T01:36:25Zoai:run.unl.pt:10362/161543Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:47:39.842923Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Teaching Note—Data Science Training for Finance and Risk Analysis A Pedagogical Approach with Integrating Online Platforms |
title |
Teaching Note—Data Science Training for Finance and Risk Analysis |
spellingShingle |
Teaching Note—Data Science Training for Finance and Risk Analysis Ashofteh, Afshin Data Science Finance Risk Analysis Active Learning Big Data Mathematics(all) SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities |
title_short |
Teaching Note—Data Science Training for Finance and Risk Analysis |
title_full |
Teaching Note—Data Science Training for Finance and Risk Analysis |
title_fullStr |
Teaching Note—Data Science Training for Finance and Risk Analysis |
title_full_unstemmed |
Teaching Note—Data Science Training for Finance and Risk Analysis |
title_sort |
Teaching Note—Data Science Training for Finance and Risk Analysis |
author |
Ashofteh, Afshin |
author_facet |
Ashofteh, Afshin |
author_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Ashofteh, Afshin |
dc.subject.por.fl_str_mv |
Data Science Finance Risk Analysis Active Learning Big Data Mathematics(all) SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities |
topic |
Data Science Finance Risk Analysis Active Learning Big Data Mathematics(all) SDG 4 - Quality Education SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities |
description |
Ashofteh, A. (2023). Teaching Note—Data Science Training for Finance and Risk Analysis: A Pedagogical Approach with Integrating Online Platforms. In C. P. Kitsos, T. A. Oliveira, F. Pierri, & M. Restaino (Eds.), Statistical Modelling and Risk Analysis: Selected contributions from ICRA9, Perugia, Italy, May 25-27, 2022 (Vol. 430, pp. 17-25). (Springer Proceedings in Mathematics & Statistics). Springer Nature. https://doi.org/10.1007/978-3-031-39864-3_2 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-13 2023-12-13T00:00:00Z 2024-12-19T01:31:50Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/161543 |
url |
http://hdl.handle.net/10362/161543 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-031-39863-6 2194-1009 PURE: 78458014 https://doi.org/10.1007/978-3-031-39864-3_2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
8 application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596965684772864 |