Electrospraying of primary chondrocytes for cartilage repair

Bibliographic Details
Main Author: Semitela, Ângela
Publication Date: 2020
Other Authors: Pereira, Andreia, Sousa, Cátia, Mendes, Alexandrina, Marques, Paula A .A. P., Completo, António
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/28029
Summary: Electrospun scaffolds have long been used for cartilage repair, due to the topographic similarity between the electrospun fibers and the collagen fibers of the extracellular matrix (ECM) in the native cartilage. Still, while their nanotophography can be beneficial for the cell proliferative and spreading behavior, it greatly reduces the inter-fiber pore size, hindering cell migration and relegating tissue formation to the surface of the scaffold [1]. A possible solution for this structura l limitation would be the direct incorporation of cells into the fibers during electrospinning of the fibrous scaffold, overcoming the challenges of cell infiltration into small pore sizes by literally surrounding cells with the fiber matrix as it is produced [1]. This can be achieved using cell electrospraying, a concept first introduced in 2005 by Jayasinghe, enables the deposition of living cells onto specific targets by exposing the cell suspension to an external high intensity electric field [2]. Cell exposure to the electric field, as well as the shear stress of passing through the cell electrospraying apparatus may affect cell viability and function, so several types of cells have been electrosprayed, and no significant influence was observed on a genetic, genomic and physiological level [4]. In fact, our previous work has demonstrated this inertness from a chondrocyte cell line (C28-I2) [5]. Still, these immortalized cells are genetically modified, and might not not accurately replicate the physiological conditions. Primary chondrocytes possess little proliferative ability, showing considerable dedifferentiation from a chondrocyte-like to a more fibroblast-like phenotype over time, particularly if growth factors are not used [5]. In this regard, electrospraying experiments were performed with primary chondrocytes to assess the process influence on chondrocyte viability. After 24 hour-incubation, chondrocyte metabolic activity was measured, and these electrosprayed (E) cells were then slip and cultured in well plates and in threedimensional anisotropic fibrous/porous scaffolds under static and perfused conditions. Non-electrosprayed (NE) cells were considered for comparison. The obtained results confirmed that the behaviour of primary chondrocytes upon electric field exposure was significantly different from that obtained for the chondrocyte cell line, which can be attributed to the lower recovery ability of these cells. Nonetheless, an increasing proliferation rate was observed over time. The proliferation performance of NE and E primary chondrocytes on 3D environment followed a similar trend, with E primary chondrocytes possessing a significantly lower viability than the NE primary chondrocytes. The application of perfused conditions to the E chondrocyte-seeded scaffolds greatly increased the chondrocyte viability to values similar to the ones obtained for NE chondrocyte-seeded scaffolds. Even though the electrosprayed primary chondrocytes suffered a substantial proliferative delay, they were able to recover, particularly under perfused conditions, suggesting that these conditions should be implemented after the electrospraying process, so that this technology might become an effective approach to uniformly incorporate primary chondrocytes into electrospun scaffolds.
id RCAP_f2f146d9f9945598de62d4765bb710a7
oai_identifier_str oai:ria.ua.pt:10773/28029
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Electrospraying of primary chondrocytes for cartilage repairCartilage tissue engineeringChondrocyteElectrosprayingElectrospun scaffolds have long been used for cartilage repair, due to the topographic similarity between the electrospun fibers and the collagen fibers of the extracellular matrix (ECM) in the native cartilage. Still, while their nanotophography can be beneficial for the cell proliferative and spreading behavior, it greatly reduces the inter-fiber pore size, hindering cell migration and relegating tissue formation to the surface of the scaffold [1]. A possible solution for this structura l limitation would be the direct incorporation of cells into the fibers during electrospinning of the fibrous scaffold, overcoming the challenges of cell infiltration into small pore sizes by literally surrounding cells with the fiber matrix as it is produced [1]. This can be achieved using cell electrospraying, a concept first introduced in 2005 by Jayasinghe, enables the deposition of living cells onto specific targets by exposing the cell suspension to an external high intensity electric field [2]. Cell exposure to the electric field, as well as the shear stress of passing through the cell electrospraying apparatus may affect cell viability and function, so several types of cells have been electrosprayed, and no significant influence was observed on a genetic, genomic and physiological level [4]. In fact, our previous work has demonstrated this inertness from a chondrocyte cell line (C28-I2) [5]. Still, these immortalized cells are genetically modified, and might not not accurately replicate the physiological conditions. Primary chondrocytes possess little proliferative ability, showing considerable dedifferentiation from a chondrocyte-like to a more fibroblast-like phenotype over time, particularly if growth factors are not used [5]. In this regard, electrospraying experiments were performed with primary chondrocytes to assess the process influence on chondrocyte viability. After 24 hour-incubation, chondrocyte metabolic activity was measured, and these electrosprayed (E) cells were then slip and cultured in well plates and in threedimensional anisotropic fibrous/porous scaffolds under static and perfused conditions. Non-electrosprayed (NE) cells were considered for comparison. The obtained results confirmed that the behaviour of primary chondrocytes upon electric field exposure was significantly different from that obtained for the chondrocyte cell line, which can be attributed to the lower recovery ability of these cells. Nonetheless, an increasing proliferation rate was observed over time. The proliferation performance of NE and E primary chondrocytes on 3D environment followed a similar trend, with E primary chondrocytes possessing a significantly lower viability than the NE primary chondrocytes. The application of perfused conditions to the E chondrocyte-seeded scaffolds greatly increased the chondrocyte viability to values similar to the ones obtained for NE chondrocyte-seeded scaffolds. Even though the electrosprayed primary chondrocytes suffered a substantial proliferative delay, they were able to recover, particularly under perfused conditions, suggesting that these conditions should be implemented after the electrospraying process, so that this technology might become an effective approach to uniformly incorporate primary chondrocytes into electrospun scaffolds.2020-03-19T13:21:14Z2020-01-23T00:00:00Z2020-01-23conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/28029eng978-972-789-632-5Semitela, ÂngelaPereira, AndreiaSousa, CátiaMendes, AlexandrinaMarques, Paula A .A. P.Completo, Antónioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:24:33Zoai:ria.ua.pt:10773/28029Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:07:37.252404Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Electrospraying of primary chondrocytes for cartilage repair
title Electrospraying of primary chondrocytes for cartilage repair
spellingShingle Electrospraying of primary chondrocytes for cartilage repair
Semitela, Ângela
Cartilage tissue engineering
Chondrocyte
Electrospraying
title_short Electrospraying of primary chondrocytes for cartilage repair
title_full Electrospraying of primary chondrocytes for cartilage repair
title_fullStr Electrospraying of primary chondrocytes for cartilage repair
title_full_unstemmed Electrospraying of primary chondrocytes for cartilage repair
title_sort Electrospraying of primary chondrocytes for cartilage repair
author Semitela, Ângela
author_facet Semitela, Ângela
Pereira, Andreia
Sousa, Cátia
Mendes, Alexandrina
Marques, Paula A .A. P.
Completo, António
author_role author
author2 Pereira, Andreia
Sousa, Cátia
Mendes, Alexandrina
Marques, Paula A .A. P.
Completo, António
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Semitela, Ângela
Pereira, Andreia
Sousa, Cátia
Mendes, Alexandrina
Marques, Paula A .A. P.
Completo, António
dc.subject.por.fl_str_mv Cartilage tissue engineering
Chondrocyte
Electrospraying
topic Cartilage tissue engineering
Chondrocyte
Electrospraying
description Electrospun scaffolds have long been used for cartilage repair, due to the topographic similarity between the electrospun fibers and the collagen fibers of the extracellular matrix (ECM) in the native cartilage. Still, while their nanotophography can be beneficial for the cell proliferative and spreading behavior, it greatly reduces the inter-fiber pore size, hindering cell migration and relegating tissue formation to the surface of the scaffold [1]. A possible solution for this structura l limitation would be the direct incorporation of cells into the fibers during electrospinning of the fibrous scaffold, overcoming the challenges of cell infiltration into small pore sizes by literally surrounding cells with the fiber matrix as it is produced [1]. This can be achieved using cell electrospraying, a concept first introduced in 2005 by Jayasinghe, enables the deposition of living cells onto specific targets by exposing the cell suspension to an external high intensity electric field [2]. Cell exposure to the electric field, as well as the shear stress of passing through the cell electrospraying apparatus may affect cell viability and function, so several types of cells have been electrosprayed, and no significant influence was observed on a genetic, genomic and physiological level [4]. In fact, our previous work has demonstrated this inertness from a chondrocyte cell line (C28-I2) [5]. Still, these immortalized cells are genetically modified, and might not not accurately replicate the physiological conditions. Primary chondrocytes possess little proliferative ability, showing considerable dedifferentiation from a chondrocyte-like to a more fibroblast-like phenotype over time, particularly if growth factors are not used [5]. In this regard, electrospraying experiments were performed with primary chondrocytes to assess the process influence on chondrocyte viability. After 24 hour-incubation, chondrocyte metabolic activity was measured, and these electrosprayed (E) cells were then slip and cultured in well plates and in threedimensional anisotropic fibrous/porous scaffolds under static and perfused conditions. Non-electrosprayed (NE) cells were considered for comparison. The obtained results confirmed that the behaviour of primary chondrocytes upon electric field exposure was significantly different from that obtained for the chondrocyte cell line, which can be attributed to the lower recovery ability of these cells. Nonetheless, an increasing proliferation rate was observed over time. The proliferation performance of NE and E primary chondrocytes on 3D environment followed a similar trend, with E primary chondrocytes possessing a significantly lower viability than the NE primary chondrocytes. The application of perfused conditions to the E chondrocyte-seeded scaffolds greatly increased the chondrocyte viability to values similar to the ones obtained for NE chondrocyte-seeded scaffolds. Even though the electrosprayed primary chondrocytes suffered a substantial proliferative delay, they were able to recover, particularly under perfused conditions, suggesting that these conditions should be implemented after the electrospraying process, so that this technology might become an effective approach to uniformly incorporate primary chondrocytes into electrospun scaffolds.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-19T13:21:14Z
2020-01-23T00:00:00Z
2020-01-23
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28029
url http://hdl.handle.net/10773/28029
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-972-789-632-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594311914029056